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Abstract

High performance turbopumps are used in many rocket propulsion systems to reduce
the weight and cost of the system. However, to meet these weight conditions and
the demands of the rocket engine, turbopumps must operate at high speeds and low
inlet pressures. This can lead to cavitation in the turbopump inducer. There are
several distinct types of cavitation dynamics. Of concern to this project is cavitation
surge which are planar oscillations in the flow that occur at frequencies usually 0.1
- 0.3 times rotor frequency. Cavitation surge can cause the turbopump to modulate
the mass flow into the rocket engine combustion chamber and thus yield variations
in engine thrust. This in turn can lead to self excited fluid-structure oscillations
and POGO instability which can result in mission failure. Characterization of the
cavitating inducer dynamics is critical to the design of the propulsion system so as to
guarantee sufficient stability margin.

This thesis introduces a control theoretic modeling framework that captures the
free response cavitation dynamics of turbopump inducers. The reduced order frame-
work was then used to guide the design of a forced response experiment. The design
of experiment included the placement of sensors, a piston actuator, and an accumu-
lator to ensure high signal to noise ratio and coherence. Forced response experiments
were carried out to experimentally validate the model, and to characterize the cav-
itation surge dynamics. The experiments identified challenges with the test facility,
specifically vibrations of the piping and support structure which induced large fluid
perturbations. Due to time constraints and COVID-19, a second test was not pos-
sible. This thesis provides useful guidelines and best practices paving the way for
future forced response system identification experiments.

Thesis Supervisor: Zoltán S. Spakovszky
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background and Motivation

Many of the rocket engine assemblies used today in the space launch industry are

turbopump fed systems. The advantage of using turbopump fed systems is that they

are capable of delivering high pressure propellants to the rocket engine with a small

mass impact relative to the vehicle weight. These systems are able to achieve these

results because of the low tank pressures and the high pressure rise from the pumps.

However, low inlet static pressure and high rotational speeds establish a regime where

cavitation is prevalent. This causes the formation and collapse of gas bubbles which

can cause immense structural damage in the pumps. To combat this pump designers

have decided to provide an initial static pressure rise by placing a cavitating inducer

just upstream of the pump impeller. As a result this limits the cavitation to just

the inducer. However, it is critical to design the inducer, so as to ensure that under

cavitating conditions, it will tolerate the structural stresses, provide the necessary

head rise, and most importantly does not destabilize the overall system.

The major concern is pogo instability. Pogo instability is a self excited oscillation

cycle where thrust variations from the propulsion system induce longitudinal vibra-

tions of the vehicle which, through feedback, can lead to instability. This instability

can cause structural failures that lead to mission failure for example with the Gemini

missions and Titan II [4]. Less severe pogo was also observed in the Apollo missions.
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In order to control these instabilities, costly pogo suppression devices, such as accu-

mulators, are typically added to the propulsion system after the fact. To date these

issues still persist and are an emphasis in the design process with the Constellation

program which was superseded by the Space Shuttle program and then the Artemis

program [12].

The characterization of the cavitation dynamics in turbopump inducers is criti-

cal during the component design and test process, but current techniques to char-

acterize cavitating inducer dynamics require sophisticated forced response test rigs.

Techniques to experimentally assess the dynamics have not changed much since the

pioneering work of Caltech in the 70’s [3] and only limited data has been collected

since that time.

1.1.1 Cavitation Instabilities in Inducers

There are several types of cavitation instabilities each of which depend on the inducer

geometry and inlet flow conditions, notably flow coefficient, 𝜑, and cavitation number,

𝜎. The different types of instabilies for the LE-7 turbopump inducer can be seen in

Figure 1-1. The main instabilities of interest here are cavitation surge, and rotating

cavitation.

Rotating cavitation is a local instability caused when the inducer is required to

operate at low cavitation numbers. This phenomena appears similar to rotating

stall as rotating cavitation has a bubble cavity(s) propagate from blade to blade

circumferentially like the stall cell of rotating stall. A key difference is that rotating

cavitation is normally supersynchronous to the rotor speed where as rotating stall is

subsynchronous. [1]

Cavitation surge, referenced as auto oscillation in literature and the main focus

of this thesis, is a system level instability that produces large planar oscillations in

pressure and flow rate. This instability is characterized by large regions of backflow

which drive the oscillations. Cavitation surge is similar to compressor surge in aero-

engines except that the compliance is due to the compressibility of the vapor cavities.

However, unlike surge, the cavitation surge frequency is usually dependent on the
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rotor frequency usually between 0.1 - 0.3 rotor frequency [1].

Figure 1-1: Cavitation instability regimes of LE-7 [20]

1.2 Previous Work

1.2.1 Characterization of Cavitation Surge Dynamics

The very first characterization of cavitaion dynamics was done so with one-dimensional

approximations of the governing equations. Rubin expressed these equations with the

lumped parameters inertance, 𝐿, resistance, 𝑅, pressure gain, 𝐺, and cavitation com-

pliance, 𝐶 [16]. Brennen expanded on this by finding that another key parameter,

the mass flow gain factor, 𝑀 , in addition to cavitation compliance was needed to

properly characterize the changing cavitation void volume [2]. The dynamics of the

inducer were formulated in the form of a transmission matrix where the elements of

the matrix, and the state vectors are all complex values as shown in Eq. (1.1).
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⎡⎣𝑝2
𝑢̃2

⎤⎦ =

⎡⎣𝑇11 𝑇12

𝑇21 𝑇22

⎤⎦⎡⎣𝑝1
𝑢̃1

⎤⎦ (1.1)

Tsujimoto then built on this, expanding it to model rotating cavitation by extend-

ing a non-cavitating semi-actuator disk model with a blade cavitation [22]. He showed

that rotating cavitation and rotating stall were different phenomena, and confirmed

the existence of forward and backward rotating cavitation. Tsujimoto then merged

his two-dimensional cavitating semi-actuator disk model with the one-dimensional

modeling theory and created a unified treatment of flow instabilities that defined the

instability onset criteria and oscillation frequency of surge, cavitation surge, rotating

stall, and rotating cavitation in terms of cavitation compliance and mass flow gain

factor [21]. However, the learnings from his unified treatment is of little practical use

unless more information on 𝐶 and 𝑀 as a function of inlet conditions is available.

𝐶 and 𝑀 can be identified from forced response experiments. These are generally

conducted by introducing mass flow fluctuations near the inducer using actuators

such as siren valves [3] or piston pulsers, which are used in this thesis. To date, how-

ever, there is limited experimental data on the characterization of inducer cavitation

dynamics and the work by Brennen et al. at Caltech in the 70s and 80s remains

standalone in this regard. As such the state of the art experimental techniques have

not changed much since the first experiments were conducted decades ago. Currently,

the unsteady upstream and downstream pressure and flow response to the mass flow

fluctuations are used to determine the 4 transmission matrix elements. However to

do so, this characterization method required at least two sets of linearly independent

data sets to determine the 4 complex transmission matrix coefficients. To achieve

this, multiple actuators at different locations in the flow loop were pulsed at different

magnitudes [3]. These sets of data were then least squares fitted to solve for the

transmission matrix coefficients.

Another challenge of these experiments was the dynamic sensing of the mass

flow. Early tests by Brennen utilized Laser Doppler Velocimetry (LDV) and later on

switched to electromagnetic flow meters to obtain more reliable measurements and
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better signal to noise properties. However, the limitation with using these devices

is that it restricts the data to only provide insight of one-dimensional oscillations.

Though sufficient for characterization of cavitation surge, higher order instabilities

cannot be identified. This thesis looks to solve this issue by using fiber film probes,

as they are capable of measuring unsteady velocity and are compact enough to be

arranged in an array similar in fashion to the pressure transducers used to characterize

rotation cavitation and alternate blade cavitation by Lettieri et al. [13].

More recent studies aimed at characterization of 𝐶 and 𝑀 were conducted using

steady CFD. These properties were found in four bladed inducers at temperatures

where thermal suppression effects were dominant [10]. The measured fluid modes

were in agreement with the natural frequencies derived the compliance and inline

feed system inertance.

1.2.2 Control Theoretical System Identification Approach

While the prior work has provided much insight into the characterization and iden-

tification of cavitation dynamics, there is still a need for new experimental data and

a simpler approach for determining cavitation dynamics of inducers. Advancements

in the identification and control of aero-engine instability can be borrowed in order

to determine inducer cavitation dynamics [18]. These advancements present a new

approach in forced response testing that utilizes a control theoretical system identi-

fication methodology. With knowledge of the system input signal (i.e. piston mass

flow/velocity fluctuation), a single set of dynamic measurements, the upstream and

downstream pressure and velocity, can be used to determine the 4 transfer functions

and the 4 transmission matrix elements.

Each transfer function is the frequency response function of the pressure/velocity

measurement to the input signal. The key benefit of transfer functions is that they

contain pole-zero information that corresponds to dynamics of the compliance el-

ements (i.e. accumulators, cavitation voids) in the system. They also serve as a

mathematical intermediary point to determining the inducer transmission matrix.

The 4 transfer functions are determined via spectral analysis and subsequently cast

31



as a transmission matrix in the form of Eq. (1.1).

1.3 Research Goals and Objectives

The overall goal of this research is to demonstrate the control theoretical system

identification method can characterize the cavitation surge dynamics of an inducer

with reduced complexity and improved reliability. The objectives are to:

∙ Leverage off previously developed reduced order models to create a framework

that captures the measured free response cavitation dynamics of the MIT in-

ducer

∙ Modify the reduced order model to create a control theoretical forced response

framework to guide the modification of an inducer test facility for forced re-

sponse testing and design of experiment

∙ Demonstrate the feasibility of fiber film probes to measure unsteady velocity

fluctuations

∙ Determine the system transfer functions using the unsteady pressure and veloc-

ity response, and the input velocity fluctuation

∙ Extract the transmission matrix and its lumped parameters (pressure gain,

impedance, compliance and mass flow gain factor) from the measured transfer

functions to characterize the cavitation dynamics.

1.4 Thesis Contributions

This thesis attempted to assess the dynamics of the MIT inducer, but was unable to

due to unanticipated fluid-structural dynamics overpowering the cavitation dynamics.

The assessment of the structural excitation during the forced response experiments

extended the timeline of the project and due to COVID-19 a second test entry was not

possible. However, the analysis of these issues lead to valuable guidelines and lessons
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learned on the design of forced response inducer test facilities. From a modeling

perspective, this thesis introduces a free response reduced order transmission matrix

modeling framework that accurately simulates the cavitation dynamics of the MIT

inducer. The free response model was validated with experimental data and then

extended into a forced response modeling framework. This methodology was used to

determine the necessary modifications to the inducer test facility for forced response

testing.
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Chapter 2

Transmission Matrix Modeling

The first models for characterization of turbopump cavitation dynamics were devel-

oped by Brennen [2]. These models were based on reduced order, linearized, one-

dimensional transmission matrices requiring the calculation of two key parameters,

the cavitation compliance, and the mass flow gain factor. Tsujimoto et al. extended

this work by using two dimensional actuator disk theory to propose a unified treat-

ment of flow instabilities [21]. This methodology provided much insight into the

onset of surge, cavitation surge, rotating stall, and rotating cavitation. However, this

modeling approach lacks flexibility with different pumping configurations because if

components are added or removed the entire governing equations need to be rewrit-

ten. As such a reduced order transmission matrix modeling framework similar to

the one initially developed by Brennen [2] and Rubin [17] was chosen in the present

research.

This chapter introduces the modeling framework for an axial duct and a gas

accumulator as done in [14], and two different modeling frameworks for cavitating

inducers as done in [17, 23]. Then it is demonstrated how these models are combined

with boundary conditions to create an eigenvalue problem for the dynamics of the

fluid system.

The modeling assumptions are as follows:

∙ Flow is one dimensional and inviscid outside of the inducer
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∙ Effects of heat transfer are neglected

∙ Reynolds number effects are neglected

∙ Flow properties can be decomposed into a steady part and small unsteady

perturbations, for example 𝑢(𝑥, 𝑡) = 𝑢̄(𝑥, 𝑡) + 𝑢̃(𝑥, 𝑡)

2.1 Lumped Parameter Model Derivation

The governing equations for a one dimensional inviscid compressible flow through a

constant area duct can be represented as follows:

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌

𝜕𝑢2

𝜕𝑥
+
𝜕𝑝

𝜕𝑥
−𝑅*

𝐿𝐴𝑢 = 0

(2.1)

where 𝑅*
𝐿 is the resistance per unit length of the element, 𝐴 is the area of the duct,

𝜌 is the density of the fluid, 𝑝 is the pressure and 𝑢 is the axial velocity.

Decomposing the pressure and velocity into a steady (¯) and a small amplitude

unsteady perturbation (~) yields:

𝑝 = 𝑝+ 𝑝

𝑢 = 𝑢̄+ 𝑢̃.
(2.2)

Neglecting higher order terms, the linearized governing equations are:

𝜕𝜌

𝜕𝑡
+ 𝑢̄

𝜕𝜌

𝜕𝑥
+ 𝜌

𝜕𝑢̃

𝜕𝑥
= 0

𝜌
𝜕𝑢̃

𝜕𝑡
+
𝜕𝑝

𝜕𝑥
−𝑅*

𝐿𝐴𝑢̃ = 0

(2.3)

The change in pressure and density can be related using the speed of sound, 𝑎̄

𝑎 =

√︃
𝑝

𝜌
|𝑠. (2.4)
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Assuming that the mean flow velocity, 𝑢̄ is small compared to the speed of sound, the

linearized governing equations can be rewritten as

1

𝜌𝑎̄2
𝜕𝑝

𝜕𝑡
+
𝜕𝑢̃

𝜕𝑥
= 0

𝜌

𝐴

𝜕𝑢̃

𝜕𝑡
+

1

𝐴

𝜕𝑝

𝜕𝑥
−𝑅*

𝐿𝑢̃ = 0.

(2.5)

From here it is beneficial to define the compliance, 𝐶*
𝐿, and the inertance, 𝐿*

𝐿, of the

duct (per unit length).

𝐶*
𝐿 =

1

𝜌𝑎̄2

𝐿*
𝐿 =

𝜌

𝐴

(2.6)

Combining these definitions with the spatial derivative of the momentum equation

and the time derivative of the continuity equation results in the linear wave equation

in terms of only velocity or pressure.

𝐿*
𝐿𝐶

*
𝐿

𝜕2𝑝

𝜕𝑡2
− 𝜕2𝑝

𝜕𝑥2
+𝑅*

𝐿𝐶
*
𝐿

𝜕𝑝

𝜕𝑡
= 0

𝐿*
𝐿𝐶

*
𝐿

𝜕2𝑢̃

𝜕𝑡2
− 𝜕2𝑢̃

𝜕𝑥2
+𝑅*

𝐿𝐶
*
𝐿

𝜕𝑢

𝜕𝑡
= 0

(2.7)

Here the linear wave equations in Eq. (2.7) will be non-dimensionalized by scaling

with the inducer tip velocity, inducer tip dynamic head, inducer tip radius and inducer

angular velocity per Eqs (2.8)

𝑈 =
𝑢

𝜔𝑟𝑇

𝑃 =
𝑝− 𝑝0

1
2
𝜌𝑝(𝜔𝑟𝑇 )2

𝑋 =
𝑥

𝑟𝑇

𝜏 = 𝑡𝜔

(2.8)

where 𝑝0 is a reference pressure, 𝜔 is the inducer rotational speed, 𝑟𝑇 is the tip radius,
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and 𝜌𝑝 is the fluid density. The non-dimensional wave equation is

𝐿𝐿𝐶𝐿
𝜕2𝑃

𝜕𝜏 2
− 𝜕2𝑃

𝜕𝑋2
+𝑅𝐿𝐶𝐿

𝜕𝑃

𝜕𝜏
= 0

𝐿𝐿𝐶𝐿
𝜕2𝑈̃

𝜕𝜏 2
− 𝜕2𝑈̃

𝜕𝑋2
+𝑅𝐿𝐶𝐿

𝜕𝑈

𝜕𝜏
= 0

(2.9)

where 𝐶𝐿, 𝑅𝐿, 𝐿𝐿 are the non-dimensional compliance, resistance and inertance re-

spectively.

𝑅𝐿 =
2

𝜌𝑝(𝜔𝑟𝑇 )
𝑅*

𝐿

𝐿𝐿 =
2𝜌𝐴

𝜌𝑝(𝜔𝑟𝑇 )
𝐿*
𝐿

𝐶𝐿 =
1

2
𝜌𝑝(𝜔𝑟𝑇 )2𝐶*

𝐿

(2.10)

Eqs (2.9) are solved in the frequency domain, by applying the Laplace transform and

the Laplace variable, 𝑠 = 𝜎 + 𝑗𝜔

𝐹 (𝑠) = ℒ{𝑓(𝑡)} =

∫︁ ∞

0

𝑓(𝜏)𝑒−𝑠𝜏𝑑𝜏. (2.11)

The solution to the wave equation yields

𝑃 (𝑋, 𝑠) = 𝐶1𝑒
𝑘𝑋 + 𝐶2𝑒

−𝑘𝑋

𝑈̃(𝑋, 𝑠) = 𝑍𝑐(𝐶1𝑒
𝑘𝑋 + 𝐶2𝑒

−𝑘𝑋)
(2.12)

where 𝐶1 and 𝐶2 are constants, 𝑍𝑐 is the characteristic impedance, and 𝑘 is the wave

number or spatial frequency of the oscillations.

𝑘2 = 𝐶𝐿𝑠(𝐿𝐿𝑠+𝑅𝐿) (2.13)

𝑍𝑐 =
𝐶𝐿𝑠

𝑘
(2.14)

If an initial state at 𝑋 = 0 for pressure and velocity to be 𝑃 = 𝑃1 and 𝑈̃ = 𝑈̃1 then
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the constants 𝐶1 and 𝐶2 can be found and the solution becomes:

𝑃 (𝑋, 𝑠) =
1

2
(𝑒𝑘𝑋 + 𝑒−𝑘𝑋)𝑃1 − 𝑍𝑐

1

2
(𝑒𝑘𝑋 − 𝑒−𝑘𝑋)𝑈̃1

𝑈̃(𝑋, 𝑠) = − 1

2𝑍𝑐

(𝑒𝑘𝑋 − 𝑒−𝑘𝑋)𝑃1 +
1

2
(𝑒𝑘𝑋 + 𝑒−𝑘𝑋)𝑈̃1

(2.15)

Rewriting the solution in terms of hyperbolic sine and cosine functions and in matrix

notation yields ⎡⎣𝑃 (𝑋)

𝑈̃(𝑋)

⎤⎦ =

⎡⎣ cosh (𝑘𝑋) −𝑍𝑐 sinh (𝑘𝑋)

− 1
𝑍𝑐

sinh (𝑘𝑋) cosh (𝑘𝑋)

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ . (2.16)

Eq. (2.16) represents a distributed element, however, not all elements (i.e. valves/

accumulators/ short ducts) need to be modeled as distributed systems. A useful

simplification can be made when the element is acoustically compact. A device is

compact when the wavelength of the flow oscillations, 1/𝑘, is much larger than the

length, 𝑙 of the device, 𝑘𝑙 << 1 allowing for the use of a Taylor series to approximate

the hyperbolic sine and hyperbolic cosine terms.⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣ 1 −𝑍𝑐𝑘𝑙

− 𝑘𝑙
𝑍𝑐

1

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ . (2.17)

Using the definition of the wave number, characteristic impedance, and converting

the per unit resistance, compliance, and inertance to bulk values yields the lumped

transmission matrix. ⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣ 1 −(𝑅 + 𝑠𝐿)

−𝑠𝐶 1

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ (2.18)

If the fluid is incompressible the non-dimensional governing equations for a constant

area element simplifies to
𝑈̃2 = 𝑈̃1

𝑃2 = 𝑃1 − 𝐿
𝜕𝑈̃

𝜕𝜏
−𝑅𝑈̃,

(2.19)
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and the transmission matrix for the compact rigid duct with incompressible flow

simplifies to ⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣1 −(𝑅 + 𝑠𝐿)

0 1

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ (2.20)

2.2 Accumulator Model

Accumulators are capacitive devices typically characterized by a large volume. For

liquid fluid systems gas accumulators are used to provide compliance into the system.

Consider the gas accumulators shown in Figure 2-1.

Figure 2-1: Accumulator model

Because of the large volume of the accumulator, the pressure is uniform between

the inlet and exit.

𝑝1 = 𝑝2 (2.21)

The compliance of the accumulator can be found by conservation of mass across the

device, represented dimensionally by

𝑚̇1 − 𝑚̇2 =
𝜕(𝜌𝑙𝑉

*
𝑙 )

𝜕𝑡
(2.22)

where 𝜌𝑙 denotes the liquid density and 𝑉 *
𝑙 denotes the dimensional liquid volume.

The liquid is incompressible, and the inlet and exit area are assumed to be equal, so
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the continuity equation can be reduced to

𝑢1 − 𝑢2 = − 1

𝐴

𝜕𝑉 *
𝑔

𝜕𝑡
, (2.23)

where 𝑉 *
𝑔 refers to the dimensional gas volume of the accumulator, and 𝐴 is the area

of the inlet or exit. Linearizing the continuity equation and rewriting in terms of

pressure yields

𝑢̃1 − 𝑢̃2 =
𝑉 *
𝑔

𝐴𝛾𝑝𝑔

𝜕𝑝

𝜕𝑡
. (2.24)

Taking the Laplace transform of this results in

𝑢̃2 = −𝐶*
𝑎𝑐𝑐𝑢𝑚𝑠𝑝1 + 𝑢̃1 (2.25)

where the dimensional compliance of the accumulator is

𝐶*
𝑎𝑐𝑐𝑢𝑚 =

𝑉 *
𝑔

𝐴𝛾𝑝𝑔
. (2.26)

Using the the ideal gas law the the compliance can also be written as:

𝐶*
𝑎𝑐𝑐𝑢𝑚 =

𝑉 *
𝑔

𝐴𝜌𝑔𝑐2𝑔
. (2.27)

Non-dimensionalizing the continuity equation results in the following transmission

matrix ⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣ 1 0

−𝑠𝐶𝑎𝑐𝑐𝑢𝑚 1

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ , (2.28)

where the non-dimensional compliance is

𝐶𝑎𝑐𝑐𝑢𝑚 =
1

2
𝜌𝑝𝜔

2𝑟𝑇𝐶
*
𝑎𝑐𝑐𝑢𝑚. (2.29)

The derivation of Eqs (2.28) shows that the dynamics of the accumulator is con-

trolled solely by the compliance. This is because the model assumes no inertance or

resistance due to the accumulator generally being short in length, and generally not
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having mechanisms that introduce losses to the flow. This model also shows that the

compliance is inversely proportional to pressure, which indicates that low cavitation

tests could cause difficulty with precise control of the accumulator compliance.

2.3 Inducer Model

Modeling inducers is challenging because the resistance and inertance are functions of

frequency, and the compliance of the inducers is a function of the inlet flow conditions.

As such multiple approaches for modeling cavitating inducer dynamics have been

developed in the past. The research conducted in this thesis considered two different

inducer models. The first is a lumped parameter model that has been used since

the 1960’s for pogo stability analysis [17]. This thesis will refer to this model as

the lumped parameter inducer model. The second inducer model has been recently

introduced and is based on an analytical model derived from a semi-actuator disk

representation extended with a blade cavity model [23]. This thesis will refer to this

model as the 1D cavitation surge model.

The inducer used throughout this research is representative of the SSME LPOP

inducer and was designed in the Gas Turbine Laboratory (GTL) at MIT. Details can

be found in Chapter 3 and in [13].

2.3.1 Lumped Parameter Inducer Model

The lumped parameter model characterizes the dynamics of the inducer based on

bulk properties such as: inertance, resistance, pump gain, mass flow gain factor, and

cavitation compliance. The last two are properties of the cavitation void volume and

are assumed to only affect the mass conservation of the inducer. For steady flow the

cavitation void volume depends on the inlet pressure (cavitation number) and mass

flow (inducer flow coefficient) so the change in cavitation void volume is:

𝜕𝑉𝐶 = 𝜕𝑝
𝜕𝑉𝐶
𝜕𝑝

+ 𝜕𝑚̇
𝜕𝑉𝐶
𝜕𝑚̇

, (2.30)
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where 𝑉𝐶 is the cavitation void volume. Based on this the dimensional compliance

and mass flow gain factor can be defined as

𝐶* = 𝜌
𝜕𝑉𝐶
𝜕𝑝

𝑀* = 𝜌
𝜕𝑉𝐶
𝜕𝑚̇

.

(2.31)

From continuity across the inducer

𝑚̇1 − 𝑚̇2 = 𝜌
𝜕𝑉𝐶
𝜕𝑡

= 𝜌
𝜕𝑉𝐶
𝜕𝑝

𝜕𝑝

𝜕𝑡
+ 𝜌

𝜕𝑉𝐶
𝜕𝑚̇

𝜕𝑚̇

𝜕𝑡
(2.32)

which written in terms of compliance and mass flow gain factor becomes

𝑚̇1 − 𝑚̇2 = 𝐶*𝜕𝑝

𝜕𝑡
+𝑀*𝜕𝑚̇

𝜕𝑡
. (2.33)

Linearizing this equation, non-dimensionalizing it, taking the Laplace transform, and

converting mass flow terms into velocity terms results in

𝑈̃2 = −𝐶𝑠𝑃1 + (1 − 𝑠𝑀)𝑈̃1. (2.34)

The pressure rise across the inducer in the frequency domain can be written as [17]

𝑝2 = 𝐺*𝑝*1 − (𝑅* + 𝑠*𝐿*) ˙̃𝑚2 (2.35)

where 𝐺* is the dimensional pump gain. Non-dimensionalizing the pressure rise equa-

tion and casting it in matrix form with the continuity equation yields the inducer

lumped parameter model⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣𝐺+ 𝑠(𝑅 + 𝑠𝐿)𝐶 (𝑅 + 𝑠𝐿)(1 − 𝑠𝑀)

𝑠𝐶 1 − 𝑠𝑀

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ . (2.36)
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2.3.2 1D Cavitation Surge Model

A recent study by Yu et al. [23] introduced a new model based identification scheme

to experimentally identify the cavitation compliance and mass flow gain factor of a

cavitating inducer from a single unsteady pressure measurement. Instead of directly

solving an eigenvalue problem to determine the system natural frequency and stabil-

ity, the identification scheme uses the inducer model to infer the correct cavitation

compliance and mass flow gain factor that yields an eigenvalue that matches the mea-

sured frequency of rotating cavitation at the cavitation number corresponding to the

onset of the instability. The modeling was primarily focused on rotating cavitation,

a two dimensional instability, and the approach was reduced for planar oscillations,

i.e. cavitation surge, for this thesis.

The model created in [23] adapted an existing semiactuator disk model [18] with

a blade cavity model to represent the cavitation void as seen in Figure 2-2.

Figure 2-2: Cavitating semi-actuator disk model [23]
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The effects of cavitation were represented in the continuity equation by the cavi-

tation void volume, and through additional losses caused by cavitation in the inducer

pressure head rise. As such, the matching conditions in two dimensions across the

cavitating inducer can be written as

𝐴2𝑈𝑥2 − 𝐴1𝑈𝑥1 = (
𝜕

𝜕𝜏
+

𝜕

𝜕𝜃
)𝑉𝐶 (2.37)

𝑈𝜃2 = 𝑈𝑥2 tan 𝛽2𝑏 (2.38)

𝑃𝑡2 − 𝑃𝑡1 = 𝑈𝑡2𝑈𝜃2 − 𝑈𝑡1𝑈𝜃1 − 𝐿𝑐𝑎𝑣 − 𝐿𝑖𝑛𝑑 − 𝐿(
𝜕

𝜕𝜏
+

𝜕

𝜕𝜃
)𝑈1 (2.39)

where 𝑈𝑡 is the rotor tip velocity, 𝑈𝜃 is the velocity in the circumferential direction,

𝜃 refers to the circumferential direction, 𝑈𝑥 is the axial velocity, and 𝐿𝑐𝑎𝑣 and 𝐿𝑖𝑛𝑑

are the cavitation and inducer stagnation pressure losses respectively. The cavitation

volume is represented as a function of cavitation number, 𝜎 and incidence angle, 𝛼,

and is defined to be in terms of cavitation volume per unit span 𝑎𝐶 .

𝑎𝐶(𝜎, 𝛼) =
𝑉𝐶ℎ1
𝐴1

(2.40)

Therefore the change in cavitation volume per unit span is related to the velocity and

pressure perturbations by

𝜕𝑎𝐶(𝜎1, 𝛼1) = 𝐹1𝜕𝑈𝑥1 + 𝐹3𝜕𝑈𝜃1 + 𝐹3𝜕𝑃1

𝐹1 = 𝑀𝐿
sin 𝛽1 cos 𝛽1

𝑈̄𝑥1

𝐹2 = −𝑀𝐿
cos 𝛽1

2

𝑈̄𝑥1

𝐹3 = −2
𝐶𝐿

𝑟21

(2.41)

where the subscript, 𝐿, refers to the local compliance or mass flow gain factor, 𝑟 is

the tip radius, and 𝛽 is the flow angle.

Because cavitation instabilities are observed to be periodic around the annulus, the

unsteady perturbations were decomposed into circumferential spatial harmonics. For
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example the pressure perturbation can be presented with a Fourier series as

𝑝(𝑥, 𝜃, 𝑡) =
∞∑︁
𝑛=0

𝑅𝑒{𝑝′𝑛(𝑥, 𝑡)𝑒𝑗𝑛𝜃}, (2.42)

where 𝑛 refers to the spatial harmonic and the superscript (′) refers to the spatial

Fourier coefficient. In this definition the 0th harmonic represents the planar oscilla-

tions, or cavitation surge, and the 1st harmonic represents rotating cavitation. The

transmission matrix in two dimensions can be determined by combining the equa-

tions (2.37 -2.41), linearizing with small amplitude perturbations, and solving in the

frequency domain. The full transmission matrix can be found in [23].

However, to adapt this model to planar oscillations, the circumferential variation

of the flow were neglected and 𝑛 = 0 was set for cavitation surge. As a result the

transmission matrix for the 1D cavitation surge model is

⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 − 2𝜕𝐿𝑐𝑎𝑣

𝜕𝜎𝑇
− 𝐴𝑅2𝐻1𝐹3𝑢̄1

cos𝛽2
2𝑏

𝑠

𝑢̄1(1 − 𝐴𝑅2

cos 𝛽2𝑏
) − (𝐿+

𝐴𝑅2

cos 𝛽2𝑏
𝐻1𝐹1)𝑠

+
𝜕𝐿𝑆𝑆

𝑅

𝜕tan 𝛽1

tan 𝛽1
𝑢̄1(1 + 𝜏𝑅𝑠)

𝐴𝑅𝐻1𝐹3𝑠 𝐴𝑅(1 +𝐻1𝐹1𝑠)

⎤⎥⎥⎥⎥⎥⎦
⎡⎣𝑃1

𝑈̃1

⎤⎦ .
(2.43)

2.4 Transmission Matrix Stacking

With all the models now defined, components can be stacked together to build a

fluid system. Figure 2-3 illustrates the simplest application of a transmission matrix,

incompressible flow through a compact axial duct.

Figure 2-3: Compact duct model

Because the fluid is incompressible, and the duct is rigid, the dynamics of this
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device are governed only by fluid inertia and resistance. As such downstream flow

perturbations are related to the upstream flow perturbations by the duct transmission

matrix as follows

⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣1 −(𝑅𝐴 + 𝑠𝐿𝐴)

0 1

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ (2.44)

or

𝑥⃗2 = 𝑇𝐴𝑥⃗1 (2.45)

where 𝑇𝐴 is the duct transmission matrix, and 𝑥⃗ is the state vector comprised of the

pressure and velocity perturbations.

The key benefits of transmission matrix modeling, however, is the ease of which it

is possible to characterize complex systems and the flexibility with which to change

that system. To expand the fluid system a duct, accumulator and duct are placed in

series with each other as shown in Figure 2-4.

Figure 2-4: Stacking of accumulator with compact upstream and downstream ducts

The perturbations at station 2 going into the accumulator are linked to the initial

perturbations at station 1, by the inertia and resistance of duct A captured by the

transmission matrix, 𝑇𝐴. The perturbations at station 3 are linked to station 2 by

the compliance of the accumulator which is captured in the accumulator transmission

matrix, 𝑇𝐵, and the perturbations at station 4 resulted from the dynamics of duct

C which is captured in the transmission matrix, 𝑇𝐶 . The final transmission matrix
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equation relating the inlet perturbations to the exit perturbations is

⎡⎣𝑃4

𝑈̃4

⎤⎦ =

⎡⎣1 −(𝑅𝐶 + 𝑠𝐿𝐶)

0 1

⎤⎦⎡⎣ 1 0

−𝐶𝐵𝑠 1

⎤⎦⎡⎣1 −(𝑅𝐴 + 𝑠𝐿𝐴)

0 1

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ (2.46)

or

𝑥⃗4 = 𝑇𝐶 𝑥⃗3 = 𝑇𝐶𝑇𝐵𝑥⃗2 = 𝑇𝐶𝑇𝐵𝑇𝐴𝑥⃗1. (2.47)

Seen from these examples, modification of the model to the fluid system only

requires knowledge of the individual component, and as such models of large and

complex systems can be built.

2.5 Boundary Conditions

To close the model, appropriate boundary conditions have to be applied so that an

eigenvalue problem can be formed. The eigenvalues are then solved for to determine

the system natural frequencies, 𝑠 = 𝜎 + 𝑗𝜔, where 𝜎 is the growth rate and 𝜔 is

the frequency of the oscillation. A negative growth rate implies exponential decay so

stable oscillations, and a positive growth rate implies exponential growth so unstable

oscillations. By imposing boundary conditions on the system transmission matrix

equation, one of the two equations will simplify to the form

𝐹 (𝑠)𝑥 = 0 (2.48)

where 𝐹 (𝑠) is a function of 𝑠. For any arbitrary x, 𝐹 (𝑠) must equal to 0.

2.5.1 Open/Closed Boundary Conditions

The open/closed boundary conditions of a fluid system is analogous to the open/closed

boundary conditions of an organ pipe. If the boundary is closed, there is a velocity

node at the boundary where pressure oscillates, but flow cannot and thus 𝑃 ̸= 0 and
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𝑈̃ = 0. Similarly, if the boundary is open then there is a pressure node, and the

opposite is true where 𝑃 = 0 and 𝑈̃ ̸= 0.

For this section, consider the transmission equation:⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣𝑇11 𝑇12

𝑇21 𝑇22

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ . (2.49)

The 4 combinations of boundary conditions and the resulting characteristic equations

are:

∙ Open-Open: If the system is open at both the inlet and exit then 𝑃1 = 𝑃2 = 0

which reduces Eq. (2.49) to

𝑇12𝑈̃1 = 0 (2.50)

∙ Open-Closed: If the system is open at the inlet and closed at the exit then

𝑃1 = 𝑈̃2 = 0 which reduces Eq. (2.49) to

𝑇22𝑈̃1 = 0 (2.51)

∙ Closed-Open: If the system is closed at the inlet and open at the exit then

𝑈̃1 = 𝑃2 = 0 which reduces Eq. (2.49) to

𝑇11𝑃1 = 0 (2.52)

∙ Closed-Closed: If the system is closed at both the inlet and exit then 𝑈̃1 = 𝑈̃2 =

0 which reduces Eq. (2.49) to

𝑇21𝑃1 = 0 (2.53)
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2.5.2 Periodic Boundary Conditions

When the fluid system being model is a closed looped, boundary conditions are peri-

odic. ⎡⎣𝑃1

𝑈̃1

⎤⎦ =

⎡⎣𝑇11 𝑇12

𝑇21 𝑇22

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ (2.54)

Periodic boundary conditions are more complex than open/closed boundary con-

ditions as multiple elements of the transmission matrix are needed to determine the

characteristic equation. To determine the characteristic equation, the fluid impedance

𝑧 is introduced.

𝑧 =
𝑃

𝑈̃
(2.55)

The equation relating the downstream pressure perturbation to the upstream pertur-

bations can be rewritten in terms of the impedance as follows:

1

𝑈̃1

(𝑃1 = 𝑇11𝑃1 + 𝑇12𝑈̃1)

𝑧1 = 𝑇11𝑧1 + 𝑇12.

(2.56)

And the equation relating the downstream velocity perturbations to the upstream

perturbations can be rewritten as follows:

1

𝑈̃1

(𝑈̃1 = 𝑇21𝑃1 + 𝑇22𝑈̃1)

1 = 𝑇21𝑧1 + 𝑇22.

(2.57)

Isolating the impedance of both equations and combining the 2 results in

𝑧1 =
𝑇12

1 − 𝑇11
=

1 − 𝑇22
𝑇21

(2.58)

and the characteristic equation for periodic boundary conditions becomes

(1 − 𝑇11)(1 − 𝑇22) − 𝑇12𝑇21 = 0. (2.59)
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Chapter 3

Experimental Analysis and

Transmission Matrix Modeling of

Cavitation Dynamics in the MIT

Inducer

The MIT inducer was tested in The Aerospace Corporation’s inducer cavitation test

facility. The inducer head rise characteristic curve, head fall off curves, and cavita-

tion dynamics can be found in [13]. The steady performance data from these tests

were used in the modeling framework to infer the dynamic behaviour of the MIT in-

ducer. This chapter gives an overview of the steady and unsteady performance of the

MIT inducer, and uses the observed dynamics to verify the free response modeling

framework in terms of cavitation surge onset condition and frequency content.

3.1 Free Response Test Experimental Setup

The Aerospace Corporation in El Segundo, California operates a water test facility

for rocket engine turbopump inducer cavitation testing. The test facility was de-

signed to be a flexible, low cost system used to capture the cavitating performance

and dynamics of a variety of inducers over a wide range of operating conditions. A
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summary of the system’s capabilities is presented here, and detailed information of

the system’s capability can be found in [6]. To properly characterize cryogenic pump

performance, the facility carefully controls three non-dimensional scaling parameters:

the inlet cavitation number, 𝜎1, the inlet flow coefficient, 𝜑, and the thermodynamic

bubble growth parameter, 𝐷𝐵. The control of these parameters allows for the proper

simulation of dynamically similar flight operating conditions.

The flow coefficient is a non-dimensional measure of volumetric flow rate as given

by

𝜑 =
𝑄1

𝐴1𝑟𝑇𝜔
. (3.1)

𝑄1 is the inlet volumetric flow rate, 𝜔 is the pump rotational speed, 𝑟𝑇 is the tip

radius, and 𝐴1 is the pump inlet area. The cavitation number, also known as the

Euler number, is the non-dimensional measure of the inlet pressure. It is given by

𝜎 =
𝑝1 − 𝑝𝑣
1
2
𝜌(𝜔𝑟𝑇 )2

, (3.2)

where 𝑝1 is the pump inlet static pressure, 𝑝𝑣 is the vapor pressure of the fluid at

the inducer inlet conditions, and 𝜌 is the fluid density. Both the flow coefficient,

and cavitation number determine the performance of the pump, represented non-

dimensionally as the total to total head coefficient, 𝜓𝑡𝑡

𝜓𝑡𝑡 =
𝑝𝑡2 − 𝑝𝑡1
1
2
𝜌(𝜔𝑟𝑇 )2

, (3.3)

where 𝑝𝑡 is the total pressure at pump inlet and outlet.

Though the thermodynamic bubble growth parameter was not used in the ex-

periments or models carried out in this thesis, Ehrlich and Murdock demonstrated

its importance in properly characterizing cryogenic pump performance in [5]. The

thermodynamic bubble growth parameter is a non-dimensional representation used

to account for the thermal effects on cavitation.

𝐷𝐵 =
𝑟𝑇𝜔

3
2∑︀ (3.4)
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∑︀
is the thermal parameter defined by Brennen [1], 𝜌𝑙 is the liquid density, 𝜌𝑔 is the

vapor gas density, ℎ𝑓𝑔 is the heat of formation of the gas, 𝑐𝑝𝑙 is the specific heat of

the liquid, 𝑇 is the fluid temperature, and 𝛼 is the thermal diffusivity of the liquid.

∑︁
=

𝜌2𝑔ℎ
2
𝑓𝑔

𝜌𝑙𝑐𝑝𝑙𝑇𝛼1/2
(3.5)

The test facility controls the flow coefficient by opening and closing a porous media

throttle valve and the cavitation number is controlled through with a vacuum pump

that changes the ullage pressure of the storage tank. The temperature is controlled

through a heating element placed inside the storage tank.

In addition to controlling the scaling parameters, the facility also utilizes a series of

secondary support systems. Because cavitation is known to be sensitive to impurities

in the fluid [1], the water test facility utilizes a helium sparging system and dissolved

oxygen sensor to remove dissolved gases. A 1 micron bag filtration system removes

any particulates in the system. Images of the system are shown in Figure 3-1 and

3-2.

Figure 3-1: Aerospace Corporation’s inducer test facility [6]
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Figure 3-2: Schematic of inducer test facility [6]

The facility can test a variety of inducers up to 76mm in diameter and up to speeds

of 5000 rpm. The inducer is mounted vertically to avoid the hydrostatic pressure

gradient across the inducer face that is present in horizontal test configurations. To

allow for different tip clearances, sensor layouts, and optical view points, the inducer

is placed in a a modular test section that can be interchanged with different housings.

Operation of the test facility and data collection are interfaced through Labview,

and a high speed 32 channel data acquisition system (DAQ). The operational pres-

sures and mass flow are measured with a Druck pressure transducer and a Foxboro

electromagnetic flowmeter. The shaft position and rotational rate are determined by

a BEI optical shaft encoder. The dynamic pressure and velocity response of the in-

ducer is captured using an 8 bit DEWEsoft high speed DAQ, Entran dynamic pressure

transducers, and Dantec fiber film probes. More details about the data acquisition

system can be found in [6].
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Figure 3-3: Close up of inducer test section

3.2 MIT Inducer

The MIT inducer is unshrouded with backswept leading edges and forward canted

blades. The inducer consists of 4 blades and 12 tandem blades. More detailed de-

scriptions of the inducer geometry can be found in [13]. The MIT inducer is shown

in Figure 3-4 and the dimensions are summarized in Table 3.1.

Table 3.1: Dimensions of MIT Inducer

Inducer Tandem Blades
Inlet Design Flow Coefficient 0.07 0.14
Blades 4 12
Tip radius, mm 37.8 37.8
Inlet hub-to-tip ratio 0.29 0.74
Outlet hub-to-tip ratio 0.72 0.83
Inlet tip angle, deg 82.7 81
Outlet tip angle, 74 60
Backsweep, deg 120 0
Inlet tip gap relative to span, % 1 2.7
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Figure 3-4: MIT inducer test hardware

3.2.1 MIT Inducer Steady Performance

The non-cavitating and cavitating steady state performance of the MIT inducer is

needed to properly model the inducer as discussed in Sections 2.3.1 and 2.3.2. The

non-cavitating performance is generally captured in a pump head characteristic curve

where the pump head rise coefficient is plotted against the inlet flow coefficient. The

cavitating performance is captured in a head fall-off curve or "knee curve" where the

head rise is plotted against the inlet cavitation number for a given flow coefficient.

The MIT inducer was tested in room temperature water and the performance

is shown in Figure 3-5. The blue line labeled, 𝜓𝑎𝑐𝑡
𝑡𝑠 is the measured total to static

pressure head rise coefficient. The curve was determined by polynomial fitting the

measured data points (red dots). The orange ideal head rise curve was inferred from

geometry, 𝜓𝑖𝑑𝑒𝑎𝑙
𝑡𝑠 , and used to find the purple inducer loss curve, 𝐿𝑖𝑛𝑑. The inset figure

is the inducer knee curve at a flow coefficient 𝜑 = 0.06.
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Figure 3-5: Measured non-cavitating performance and inferred stagnation pressure
loss. Inset shows cavitation performance head loss curve at 𝜑 = 0.06 [23]

3.2.2 Cavitation Dynamics of The MIT Inducer

Dynamic pressure measurements were used to characterize the cavitation dynamics of

the MIT inducer. Cavitation surge, rotating cavitation and alternate blade cavitation

were observed during the free response experiments. At a flow coefficient, 𝜑 = 0.083

all 3 types of cavitation were observed. Figure 3-6 summarizes the regimes of cavi-

tation along the knee curve. Further discussion on the characterization of rotating

cavitation can be found in [13, 23].

Cavitation surge was more apparent at lower flow coefficients. Figure 3-7 shows

the non-dimensional dynamic pressure measurements versus time in rotor revolutions

and the corresponding spectrogram. During this test, the inducer operated at 𝜑 =

0.06 as the inlet cavitation number was decreased over time. From Figure 3-7 the

magnitude of the perturbations did not consistently increase with the decrease in

cavitation number, instead there was an abrupt increase in the magnitudes at 𝜎 = 0.03

and an abrupt decrease in the magnitude at 𝜎 = 0.02. This sharp increase and

decrease in magnitude was an onset and termination of cavitation surge instability.

The cavitation surge frequency however did change with the cavitation number, until
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the onset of the instability. During the instability the cavitation surge frequency was

found to be roughly constant at 0.09 of rotor frequency.

Figure 3-6: Cavitation regimes along the inducer knee curve at 𝜑 = 0.083 [13]

Figure 3-7: Time series data of cavitation surge (top) and spectrogram of cavitation
surge data (bottom) of MIT inducer at 𝜑 = 0.06 [10]
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3.3 Free Response Model Implementation and Veri-

fication with Experimental Data

The framework derived in Chapter 2 was used to replicate the measured cavitation

surge dynamics summarized in Section 3.2.2. The model was anchored such that

the real part of the eigenvalues match the observed stability trends, and such that

the imaginary part of the eigenvalues agreed with the measured cavitation surge

frequency. The model accounted for the dynamics of each fluid device used in the

test facility with a compact lumped transmission matrix. The dynamics of the fluid

system was simulated over the cavitation number range 𝜎 = 0.02 to 𝜎 = 0.1 and

𝜑 = 0.06.

3.3.1 Fluid System Component Modeling and Stacking

The inducer test facility has a large number of components that need to be modeled.

Figure 3-8 shows a schematic of the test facility.

Figure 3-8: Schematic of inducer test facility
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Each component except for the inducer and tank were modeled with the com-

pact incompressible duct model, Eq. (2.20). The tank was modeled using the gas

accumulator model, Eq. (2.28), and the inducer was modeled using the 1D cavita-

tion surge model. Appendix B illustrates the decision to use the 1D cavitation surge

model over the lumped parameter inducer model. The majority of components were

able to be modeled using the acoustically compact duct model, Eq. (2.20), because

the wavelength of the perturbation was much larger than the sum of the lengths of

the components. The wavelength of the flow perturbations was estimated using the

cavitation surge frequency and the speed of sound in water, and verified with the

simulated eigenvalue natural frequencies. The inertance and resistance of each ele-

ment in the inducer test facility were empirically measured in [9]. Each component

description and its non-dimensional resistance and inertance values can be found on

Table 3.2.

Because the inlet cavitation number is controlled through modulation of the stor-

age tank ullage pressure, the compliance of the tank as a function of the pump inlet

cavitation number was experimentally determined. The experimentally measured

compliance of the tank as a function of cavitation number can be found in Appendix

A.

To model the inducer using the 1D cavitation surge model, the MIT inducer loss

characteristics presented in Section 3.2.1 were used. The MIT inducer geometry was

used to determine the inertance, and a modified version of the the CFD estimated

mass flow gain factor and cavitation compliance, from [10], were used. 𝐶 and 𝑀

were modified because there was poor matching between the measured and simulated

dynamics, using the unaltered CFD mass flow gain factor and cavitation compliance.

The modification of the compliance and mass flow gain factor are discussed in Section

3.3.3. The non-dimensionalized compliance and mass flow gain factor from [10] are

plotted in Appendix A.

Because the inducer test facility was a closed loop system, a periodic boundary

condition is the appropriate condition to apply to this modeling framework. How-

ever, since all fluid originates and ends back in the storage tank, which has a large
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Table 3.2: Inducer test facility components and non-dimensional resistances and in-
ertances

Element
Number Element Element Description Resistance (x10−4) Inertance

1 a Inlet Flow Straightener 2.94 0.19
2 b Tank Entrance 75.88 0.45
3 c 6" Ball Valve 3.81 4.67
4 d 90 Degree Elbow 20.55 4.87
5 e 90 Degree Elbow 20.55 4.87
6 f 90 Degree Elbow 20.55 4.87
7 g Bellows 3.06 3.76
8 h Inlet Flow Conditioner 2054.05 4.25
9 i Inlet Contraction 822.04 3.02
10 l Inlet Line Vertical Section 368.04 51.77

11 ab Pump Housing from Inducer Exit
to Discharge Flange 84502.29 25.89

12 p Discharge Line Horizontal
Straight Section 718.22 118.23

13 l 90 Degree Elbow 328.82 8.77
14 ac Section Between Elbows 113.62 18.70
15 m 45 Degree Elbow 219.21 18.70

16 n Section Between Elbow and Boost
Pump 446.35 73.48

17 ad 90 Degree Elbow 328.81 8.78
18 p 90 Degree Elbow 328.81 8.78
19 q Section Between 90 Degree Elbow 146.08 8.78
20 r 90 Degree Elbow 328.81 8.78

21 s Section Between Elbow and sv
Ball Valve 109.56 18.04

22 t Discharge Line Ball Valve
Straight Section 64.92 10.69

23 sv Porous Flow Control Valve 189484.9 8.78
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ullage volume, a reasonable approximation would be to assume an open-open bound-

ary condition without the storage tank. This assumption reduces complexity in the

free and forced response model. Comparisons of the two boundary conditions in Sec-

tion 3.3.2 shows that this approximation has little effect on the predicted dynamics

and the open-open boundary condition was applied to the forced response modeling

framework.

After determining each transmission matrix for each component and the boundary

conditions, the matrices were stacked to form the overall model of the inducer test

facility. Using open-open boundary conditions in place of the storage tank, the facility

transmission matrix equation is

⎡⎣ 0̃

𝑈̃2

⎤⎦ =
23

Π
𝑛=11

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦[︁
𝑇𝑖𝑛𝑑𝑢𝑐𝑒𝑟

]︁ 10

Π
𝑛=1

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦⎡⎣ 0̃

𝑈̃1

⎤⎦ . (3.6)

The transmission matrix for the inducer test facility including the storage tank and

periodic boundary conditions is

⎡⎣𝑃1

𝑈̃1

⎤⎦ =

⎡⎣ 1 0

−𝑠𝐶𝑡𝑎𝑛𝑘 1

⎤⎦ 23

Π
𝑛=11

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦[︁
𝑇𝑖𝑛𝑑𝑢𝑐𝑒𝑟

]︁ 10

Π
𝑛=1

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ .
(3.7)

In both transmission matrix equations the subscript 𝑛 refers to the element number

as indexed in Table 3.2. [𝑇𝑖𝑛𝑑𝑢𝑐𝑒𝑟] refers to the cavitating inducer transmission matrix

model.

The eigenvalue equation of the open-open system was determined from Eq. (2.50),

and the eigenvalue equation of the closed loop system was determined from Eq. (2.59).

These two eigenvalues predictions were compared to each other to determine if an

open-open boundary condition was an appropriate approximation for modeling of the

Aerospace Corporation’s inducer test facility.
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3.3.2 Boundary Condition Selection

In the comparison of the two boundary conditions, this section used both inducer

models when comparing the eigenvalues. The compliance and mass flow gain factor

were the CFD derived values from Jackson et al. [9]. All simulations occurred at the

same flow coefficient as the test data, 𝜑 = 0.06.

Using the lumped parameter model, the eigenvalues found using both boundary

conditions are shown in Figure 3-9. The root locus plot begins with 𝜎 = 0.1 and de-

creases to 𝜎 = 0.02. The error percentage between the 2 boundary conditions is shown

in Figure 3-10. The average error percentage across the inlet cavitation range was

0.3% and the maximum error was 0.5%. As such with the lumped parameter model,

an open-open boundary condition is nearly identical to using a periodic boundary

condition.

Figure 3-9: The root locus plots using the lumped parameter inducer model shows
very similar estimates for the cavitation surge eigenvalues regardless of the boundary
condition
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Figure 3-10: The error percentage between the eigenvalues of the two boundary con-
ditions when using the lumped parameter inducer model is small, indicating that the
open-open boundary condition is an appropriate approximation

The simulations with the 1D cavitation surge model resulted in a similar conclu-

sion. Figure 3-11 shows the eigenvalues found using the 1D cavitation surge model

and the two boundary conditions. Figure 3-12 shows the error percentage between

the two boundary conditions.

The error percentage between the 2 condition using the 1D cavitation surge model

was higher than with the lumped parameter model, but still on the order of a per-

centage point. The average error over the cavitation range was 1.8% with a max error

percentage of 3.5%.

With both inducer models showing only small errors in eigenvalue estimations,

this thesis used an open-open boundary condition for forced response modeling.

64



Figure 3-11: The root locus plots using the 1D cavitation surge model shows very
similar estimates for the cavitation surge eigenvalues regardless of the boundary con-
dition condition

Figure 3-12: The error percentage between the eigenvalues of the two boundary condi-
tions when using the 1D cavitation surge model is small, indicating that the open-open
boundary condition is an appropriate approximation

3.3.3 Modeling Framework Verification through Modification

of C and M

To match the measured dynamics of the MIT inducer, the modeling framework re-

quired modifying the CFD calculated 𝐶 and 𝑀 from [9]. Rubin in [17] stated that

the cavitation compliance and mass flow gain factor were found to be complex values,
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due to the time lag between the response of the cavitation void volume to changes to

the operating conditions. Rubin introduced the complex cavitation compliance, and

mass flow gain factor in the form of

𝐶 =
𝐶

1 + 𝜏𝐶

𝑀 =
𝐶

1 + 𝜏𝑀

(3.8)

where 𝜏 is a time lag value, he found to be between 0.5 − 3.2. The time lag along

with a scaling coefficient was used to modify these parameters until the estimated

cavitation surge frequency and stability trends matched the measured data. Table

3.3 shows the modified 𝐶 and 𝑀 .

Table 3.3: Modified Cavitation Compliance and Mass Flow Gain Factor

Cavitation Compliance Mass Flow Gain Factor

0.3𝐶
1+0.5𝑠

𝑀
1+0.5𝑠

These modifications were added because the frequency content and stability trends

found using the unmodified CFD 𝐶 and 𝑀 did not matched with the observed data.

The cavitation surge frequency using the unmodified CFD 𝐶 and 𝑀 was too low

when compared to the measured cavitation surge frequency. Like with a helmholtz

resonator, the frequency of the cavitation surge instability is inversely proportional

to the volume (compliance). As such the comparison between the simulated and

measured frequencies indicated that the compliance from CFD was too large, and

should be reduced. The frequency comparison is in Figure 3-13.

The model using the unmodified CFD 𝐶 and 𝑀 also never predicted the observed

onset and termination of cavitation surge instability seen from the test data. To

quantify the stability, the critical damping percentage, 𝜁, is introduced where
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Figure 3-13: Cavitation surge frequency model estimation using unmodified CFD 𝐶
and 𝑀 does not match measured cavitation surge frequency

𝑠 = 𝜎 + 𝑗𝜔

𝜔𝑛 =
√
𝜎2 + 𝜔2

𝜁 =
𝜎

𝜔𝑛

* 100%.

(3.9)

Figure 3-14 shows the modeled critical damping percentage as a function of cavitation

number along with the measured cavitation surge onset and termination points. The

stability comparison indicates that there is too much damping in the system and to

match the observed behavior the estimated mass flow gain factor needs to also be

decreased.

The modified 𝐶 and𝑀 had reflected these observations and matched the measured

data more closely. The modified compliance is a smaller value compared to the

unmodified CFD compliance due to the added coefficient of 0.3, which increases the

cavitation surge frequency such that it matches with the measured frequency as seen

in Figure 3-15. Though the addition of the time lag increases the amount of damping

within the system, the reduction of the compliance counters the stability increase of
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Figure 3-14: Stability trend estimation using unmodified CFD 𝐶 and 𝑀 does not
match observed stability trend

the time lag. As such there wasn’t a need to multiply the mass flow gain factor with

a coefficient. These modifications yielded the cavitation surge onset at 𝜎 = 0.035 and

cavitation surge termination at 𝜎 = 0.027.

The simulated cavitation surge frequency found with the modified 𝐶 and 𝑀 is

shown in Figure 3-15 and the modeled stability trend is shown in Figure 3-16.
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Figure 3-15: Cavitation surge frequency model estimation using modified CFD 𝐶 and
𝑀 matches measured cavitation surge frequency

Figure 3-16: Stability trend estimation using modified CFD 𝐶 and 𝑀 more closely
matches observed stability trend
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Chapter 4

Forced Response Modeling and

Transfer Function Identification

Methodology

To determine the changes to the inducer test facility required for forced response test-

ing, the modeling methodology was extended to guide the design of the experiment.

The forced response model consists of determining transfer functions between the

piston actuator velocity fluctuations to the pressure and velocity response at different

locations in the inducer test facility. This chapter derives the modeling framework

used in Chapter 5 and introduces the control theoretical system identification method

employed to experimentally determine the inducer transfer function and transmission

matrix.

4.1 Drive Point Impedance Modeling

The forced response model utilizes an impedance based modeling approach. The drive

point impedance relates the velocity perturbations created by the piston actuator to

its pressure perturbations. The drive point impedance is then used to determine the

pressure and velocity transfer function at other locations away from the piston using

transmission matrices defined in Chapter 2.
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The simplest drive point impedance model occurs when the piston actuator is

located at a system boundary. For a system described by the transmission matrix,

[𝑇 ], and pulsed at the exit, the transmission matrix equation is as follows:

⎡⎣𝑃𝑝

𝑈̃𝑝

⎤⎦ =

⎡⎣𝑇11 𝑇12

𝑇21 𝑇22

⎤⎦⎡⎣𝑃1

𝑈̃1

⎤⎦ (4.1)

where the subscript (𝑝) refers to the perturbations created by the piston actuator.

Using Eq. (2.55), the drive point impedance, 𝑧𝑝 of this system is simply

𝑧𝑝 =
𝑃𝑝

𝑈̃𝑝

=
𝑇11𝑃1 + 𝑇12𝑈̃1

𝑇21𝑃1 + 𝑇22𝑈̃1

, (4.2)

where the boundary conditions will determine the exact form of 𝑧𝑝. If the piston

actuator is located at the system inlet, the transmission matrix equation would be

defined as follows: ⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣𝑇11 𝑇12

𝑇21 𝑇22

⎤⎦⎡⎣𝑃𝑝

𝑈̃𝑝

⎤⎦ . (4.3)

The inverse of the transmission matrix is taken to isolate the piston perturbation so

that the transmission matrix equation is⎡⎣𝑃𝑝

𝑈̃𝑝

⎤⎦ =
1

| 𝑇 |

⎡⎣ 𝑇22 −𝑇12
−𝑇21 𝑇11

⎤⎦⎡⎣𝑃2

𝑈̃2

⎤⎦ , (4.4)

where | 𝑇 | refers to the determinant of the matrix. The resulting drive point

impedance with the piston actuator at the system inlet is

𝑧𝑝 =
𝑃𝑝

𝑈̃𝑝

=
𝑇22𝑃2 − 𝑇12𝑈̃2

−𝑇21𝑃2 + 𝑇11𝑈̃2

. (4.5)

Again the boundary conditions will determine the exact form of 𝑧𝑝.

If the boundary conditions are open/closed conditions, then placing the actuator

at a system boundary places it on a node of the system. To avoid this the driving

point impedance at arbitrary locations is needed. Consider the system shown in
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Figure 4-1.

Figure 4-1: Schematic of system with arbitrary pulser location

Figure 4-1, is divided into 2 sections by the piston actuator, one of which the

actuator is pulsing at the exit of section A and the other where the actuator is

pulsing at the inlet of section B. The impedance from station 1 to station 2, 𝑧𝑎, is

the same as the impedance derived in Eq. 4.2. Similarly the impedance from station

4 to station 3, 𝑧𝑏, is the impedance derived in Eq. 4.5.

𝑧𝑎 =
𝐴11𝑃1 + 𝐴12𝑈̃1

𝐴21𝑃1 + 𝐴22𝑈̃1

(4.6)

𝑧𝑏 =
𝐵22𝑃4 −𝐵12𝑈̃4

−𝐵21𝑃4 +𝐵11𝑈̃4

(4.7)

At the junction, the pressure perturbations are uniform, and the flow perturbations

follows continuity such that

𝑃2 = 𝑃3 = 𝑃𝑝 (4.8)

𝑈̃3 = 𝑈̃2 + 𝑈̃𝑝. (4.9)

Using Eqs. (4.8), (4.9), and (2.55) the drive point impedance can be represented in

terms of 𝑧𝑎 and 𝑧𝑏.
𝑈̃3

𝑃3

=
𝑈̃2

𝑃2

+
𝑈̃𝑝

𝑃𝑝

1

𝑧𝑏
=

1

𝑧𝑎
+

1

𝑧𝑝

(4.10)

𝑧𝑝 =
𝑧𝑎𝑧𝑏
𝑧𝑎 − 𝑧𝑏

(4.11)

Eqs. (4.6) and (4.7) are true for a system with open/closed boundary conditions,
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but not for one with periodic boundary conditions. For a closed loop system the

impedances found from Section 2.5.2 can be applied such that the impedances are:

𝑧𝑎 =
𝑇12

1 − 𝑇11
(4.12)

and

𝑧𝑏 =
−𝑇12

| 𝑇 | −𝑇22
, (4.13)

where 𝑇 is the transmission matrix of the fluid system.⎡⎣𝑃4

𝑈̃4

⎤⎦ =

⎡⎣𝑃1

𝑈̃1

⎤⎦ = [𝑇 ]

⎡⎣𝑃1

𝑈̃1

⎤⎦ (4.14)

4.2 Transfer Functions at Arbitrary Locations

To determine the transfer functions at arbitrary locations, the drive point impedance

is related to those locations with the system transmission matrices.

4.2.1 Piston Actuator Located Upstream of Sensing Location

Consider the system in Figure 4-2 where the transfer functions are desired at 𝑚,

located somewhere in the downstream section, B.

Figure 4-2: Schematic of a system with pulser located upstream of the desired transfer
function location, 𝑚. Duct M and station 𝑚 are located within duct B

The perturbations just downstream of the forcing location at station 3 can be

related to station 𝑚 with the transmission matrix as follows:
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⎡⎣𝑃𝑚

𝑈̃𝑚

⎤⎦ =

⎡⎣𝑀11 𝑀12

𝑀21 𝑀22

⎤⎦⎡⎣𝑃3

𝑈̃3

⎤⎦ . (4.15)

Using the equations in this matrix, the transfer functions relating the perturbations

at 𝑚 to station 3 are

𝑃𝑚

𝑈̃3

= 𝑀11𝑧𝑏 +𝑀12

𝑃𝑚

𝑃3

= 𝑀11 +
𝑀12

𝑧𝑏

𝑈̃𝑚

𝑈̃3

= 𝑀21𝑧𝑏 +𝑀22

𝑈̃𝑚

𝑃3

= 𝑀21 +
𝑀22

𝑧𝑏

(4.16)

in terms of 𝑧𝑏 = 𝑃3

𝑈̃3
. These equations can then be used to find the transfer functions

in terms of 𝑧𝑝 where
𝑃𝑚

𝑈̃𝑝

=
𝑃𝑚

𝑃3

𝑧𝑝 = 𝑧𝑝(𝑀11 +
𝑀12

𝑧𝑏
)

𝑈̃𝑚

𝑈̃𝑝

=
𝑈̃𝑚

𝑃3

𝑧𝑝 = 𝑧𝑝(𝑀21 +
𝑀22

𝑧𝑏
).

(4.17)

The poles of these transfer functions are the same as the eigenvalues found in

Chapter 3 and represents the dynamic behavior of each compliance element in the

system.

4.2.2 Piston Actuator Located Downstream of Sensing Loca-

tion

The process to determine the transfer function when the sensor is located in the

upstream section, A is similar to when the sensor location is in section B. Consider

the system in Figure 4-3.

The perturbations created by the piston actuator are related to the sensing loca-
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Figure 4-3: Schematic of a system with pulser located downstream of the desired
transfer function location, 𝑚. Duct M and station 𝑚 are located within duct A

tion with the transmission matrix, [𝑀 ] as follows:

⎡⎣𝑃2

𝑈̃2

⎤⎦ =

⎡⎣𝑀11 𝑀12

𝑀21 𝑀22

⎤⎦⎡⎣𝑃𝑚

𝑈̃𝑚

⎤⎦ . (4.18)

With this transmission matrix equation, [𝑀 ] is inverted to yield

⎡⎣𝑃𝑚

𝑈̃𝑚

⎤⎦ =
1

|𝑀 |

⎡⎣ 𝑀22 −𝑀12

−𝑀21 𝑀11

⎤⎦⎡⎣𝑃2

𝑈̃2

⎤⎦ (4.19)

The 4 equations of this matrix in terms of 𝑧𝑎 = 𝑃2

𝑈̃2
are

𝑃𝑚

𝑈̃2

=
1

|𝑀 |
(𝑀22𝑧𝑎 −𝑀12)

𝑃𝑚

𝑃2

=
1

|𝑀 |
(𝑀22 −

𝑀12

𝑧𝑎
)

𝑈̃𝑚

𝑈̃2

=
1

|𝑀 |
(−𝑀21𝑧𝑎 +𝑀11)

𝑈̃𝑚

𝑃2

=
1

|𝑀 |
(−𝑀21 +

𝑀11

𝑧𝑎
).

(4.20)

Finally the transfer function for an arbitrary point upstream of the piston actuator

in terms of 𝑧𝑝 are
𝑃𝑚

𝑈̃𝑝

=
𝑃𝑚

𝑃2

𝑧𝑝 =
𝑧𝑝

|𝑀 |
(𝑀22 −

𝑀12

𝑧𝑎
)

𝑈̃𝑚

𝑈̃𝑝

=
𝑈̃𝑚

𝑃2

𝑧𝑝 =
𝑧𝑝

|𝑀 |
(−𝑀21 +

𝑀11

𝑧𝑎
).

(4.21)
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Again the poles these transfer functions are the same as the free response eigen-

values and represent the dynamic behavior of each compliance element.

4.3 Transfer Function and Transmission Matrix Iden-

tification

Experimental characterization is necessary to validate the models. Instead of taking

a similar approach to Brennen [3], this thesis leveraged off the work done in the

"smart engine project" in the 1990’s by the GTL at MIT. This project demonstrated

a variety of actuation and sensing schemes which extended the stable operating range

of axial compressors (see [18] for examples). The outcome of the smart engine project

resulted in a control theoretical approach to the characterization of the dynamics of

axial compressors. This approach is extended for characterization of the cavitation

dynamics of the MIT inducer.

To characterize the one-dimensional inducer cavitation dynamics, the control the-

oretical approach only required a single set of upstream and downstream pressure

and velocity data, and replaced the second linearly independent data set required in

Brennen’s approach with measurements of the unsteady velocity fluctuations by the

piston actuator. This data set is used to determine four transfer functions which are

then used to determine the inducer cavitation dynamics transmission matrix. The

transfer functions show the dynamics cavitating inducer along with the dynamics

of the rest of the test facility, whereas the transmission matrix only represents the

dynamics of the inducer.

To illustrate this method, an example schematic for the implementation of sen-

sors is shown in Figure 4-4 and an open loop block diagram representing the plant

dynamics is shown in Figure 4-5.

The velocity perturbations created by the actuator are assumed to be known and

represented by the input signal, 𝑐(𝑠). The cavitation dynamics of the fluid system is

represented by 𝐺(𝑠), and the output signals, 𝑦(𝑠), is the inducer dynamic response
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Figure 4-4: Schematic of inducer and sensors

Figure 4-5: Open loop block diagram for system transfer functions

to the forcing. The inducer response is comprised of the upstream and downstream

pressure and velocity perturbations, meaning that there are 4 components to the

cavitation dynamics, 𝐺(𝑠) as shown in Eq. (4.22).
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𝑃𝑢𝑝(𝑠) = 𝐺𝑃𝑢𝑝𝑈𝑝(𝑠)𝑈̃𝑝(𝑠)

𝑃𝑑𝑛(𝑠) = 𝐺𝑃𝑑𝑛𝑈𝑝(𝑠)𝑈̃𝑝(𝑠)

𝑈̃𝑢𝑝(𝑠) = 𝐺𝑈𝑢𝑝𝑈𝑝(𝑠)𝑈̃𝑝(𝑠)

𝑈̃𝑑𝑛(𝑠) = 𝐺𝑈𝑑𝑛𝑈𝑝(𝑠)𝑈̃𝑝(𝑠)

(4.22)

The subscript 𝑢𝑝 refers to the perturbations upstream of the inducer, 𝑑𝑛 refers

to the perturbations downstream of the inducer, and 𝑝 refers to the input forcing

perturbations.

To determine the transfer functions of system dynamics, the cross spectrum of the

measured input, 𝑐(𝑠), and output signal, 𝑦(𝑠), is divided by the power spectrum of

𝑐(𝑠).

𝐺(𝑠) =
Φ𝑦𝑐(𝑠)

Φ𝑐𝑐(𝑠)
(4.23)

where Φ represents the Fourier transform of the correlation function and the subscripts

are the signals in the correlation function.

The last step of this approach is to determine the transmission matrix. To do so,

the perturbations of the inlet velocity and pressure are related to the outlet velocity

and pressure. Eliminating the piston actuator velocity from Eqs. 4.22 yields:

𝑃𝑑𝑛(𝑠) = 𝐺𝑃𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑃𝑢𝑝𝑈𝑝
(𝑠)𝑃𝑢𝑝(𝑠)

𝑃𝑑𝑛(𝑠) = 𝐺𝑃𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑈𝑢𝑝𝑈𝑝
(𝑠)𝑈̃𝑢𝑝(𝑠)

𝑈̃𝑑𝑛(𝑠) = 𝐺𝑈𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑃𝑢𝑝𝑈𝑝
(𝑠)𝑃𝑢𝑝(𝑠)

𝑈̃𝑑𝑛(𝑠) = 𝐺𝑈𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑈𝑢𝑝𝑈𝑝
(𝑠)𝑈̃𝑢𝑝(𝑠)

(4.24)

where the plant dynamics of the inducer are

𝐺𝑃𝑑𝑛𝑃𝑢𝑝(𝑠) = 𝐺𝑃𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑃𝑢𝑝𝑈𝑃
(𝑠)

𝐺𝑃𝑑𝑛𝑈𝑢𝑝(𝑠) = 𝐺𝑃𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑈𝑢𝑝𝑈𝑃
(𝑠)

𝐺𝑈𝑑𝑛𝑃𝑢𝑝(𝑠) = 𝐺𝑈𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑃𝑢𝑝𝑈𝑃
(𝑠)

𝐺𝑈𝑑𝑛𝑈𝑢𝑝(𝑠) = 𝐺𝑈𝑑𝑛𝑈𝑃
(𝑠)𝐺−1

𝑈𝑢𝑝𝑈𝑃
(𝑠).

(4.25)
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Notice that𝐺𝑃𝑑𝑛𝑃𝑢𝑝 , 𝐺𝑃𝑑𝑛𝑈𝑢𝑝 , 𝐺𝑈𝑑𝑛𝑃𝑢𝑝 , 𝐺𝑈𝑑𝑛𝑈𝑢𝑝 are similar to the pressure gain, impedance,

compliance, and mass flow gaing terms defined by Brennen [3]. As such the trans-

mission matrix of a cavitating inducer can be expressed as⎡⎣𝑃𝑑𝑛

𝑈̃𝑑𝑛

⎤⎦ =

⎡⎣𝐺𝑃𝑑𝑛𝑃𝑢𝑝(𝑠) 𝐺𝑃𝑑𝑛𝑈𝑢𝑝(𝑠)

𝐺𝑈𝑑𝑛𝑃𝑢𝑝(𝑠) 𝐺𝑈𝑑𝑛𝑈𝑢𝑝(𝑠)

⎤⎦⎡⎣𝑃𝑢𝑝

𝑈̃𝑢𝑝

⎤⎦ . (4.26)
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Chapter 5

Model Based Design of Force

Response Experiment

The necessary modifications such that the inducer test facility was suitable for forced

response testing included the addition of a gas accumulator, the addition of a piston

actuator, and the determination of the sensor locations. The gas accumulator was

used to ensured that the inducer pressure and velocity response to the piston pulse

velocity remained linear, but with a sufficiently high signal to noise ratio. The effect of

each modifications, i.e. accumulator size and location, were determined by performing

several parametric studies using the forced response model. These trade studies

were then used with manufacturing timelines and physical constraints to determine

a recommended test facility design.

5.1 Sensor Locations

Figure 5-1 shows the location of the sensors in the inducer test facility. The upstream

fiber film probe was placed 1.14 inducer diameters upstream of the inducer tip plane

while pressure transducer was placed 1 diameter upstream of the inducer tip plane.

For ease of manufacturing the downstream sensors were placed 1.7 inducer tip di-

ameters downstream of the pump housing instead of immediately downstream of the

inducer. Because this downstream sensor location also measured the dynamics of the
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Figure 5-1: Pressure transducer and fiber film probe locations around the inducer

inducer housing, simulated transfer functions at this location were compared with

the transfer functions located at a point upstream of the housing, but downstream

of the inducer. It was found that there was minimal difference between the transfer

functions of these two locations.

5.2 Example Forced Response Model Implementa-

tion

Because multiple trade studies were conducted, there were multiple implementations

of the forced response model that simulated the inducer test facility dynamic behavior.

As such this section provides an example walk through on how to determine the four

pressure and velocity transfer functions. The configuration of the test facility in this

walk through is shown in Figure 5-2 where the accumulator was placed downstream

of the discharge duct and the piston was placed at the midpoint of the discharge

duct. The upstream sensors were assumed to be placed immediately upstream of the

inducer, and the downstream sensors were assumed to be immediately downstream
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of the pump housing. Table 5.1 is a modified version of Table 3.2 that reflects these

changes.

Because the piston is located downstream of the inducer, the appropriate transfer

function equations were derived in Section 4.2.2. The same nomenclature (matrices

𝐴, 𝐵, and 𝑀 as in Figure 4-3) is carried through, however, since both the upstream

and downstream sensor locations are desired, there are 2 sets of transfer function

equations and thus 2 𝑀 matrices. 𝑀𝑢𝑝 is used to find the upstream perturbations

and 𝑀𝑑𝑛 is used to find the downstream perturbations. Figure 5-2 illustrates which

components belong to matrix 𝐴, 𝑀𝑢𝑝, 𝑀𝑑𝑛 and 𝐵.

Figure 5-2: Schematic for forced response derivation
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Table 5.1: Inducer Test Facility Components and Non-Dimensional Resistances and
Inertances for Example Forced Response Model Implementation

Element
Number Element Element Description Resistance (x10−4) Inertance

1 a Inlet Flow Straightener 2.94 0.19
2 b Tank Entrance 75.88 0.45
3 c 6" Ball Valve 3.81 4.67
4 d 90 Degree Elbow 20.55 4.87
5 e 90 Degree Elbow 20.55 4.87
6 f 90 Degree Elbow 20.55 4.87
7 g Bellows 3.06 3.76
8 h Inlet Flow Conditioner 2054.05 4.25
9 i Inlet Contraction 822.04 3.02
10 l Inlet Line Vertical Section 368.04 51.77

11 ab Pump Housing from Inducer Exit
to Discharge Flange 84502.29 25.89

12 p1
Discharge Line Horizontal

Straight Section Upstream of
Piston Actuator

359.11 59.12

13 p2
Discharge Line Horizontal

Straight Section Downstream of
Piston Actuator

359.11 59.12

14 l 90 Degree Elbow 328.82 8.77
15 ac Section Between Elbows 113.62 18.70
16 m 45 Degree Elbow 219.21 18.70

17 n Section Between Elbow and Boost
Pump 446.35 73.48

18 ad 90 Degree Elbow 328.81 8.78
19 p 90 Degree Elbow 328.81 8.78
20 q Section Between 90 Degree Elbow 146.08 8.78
21 r 90 Degree Elbow 328.81 8.78

22 s Section Between Elbow and sv
Ball Valve 109.56 18.04

23 t Discharge Line Ball Valve
Straight Section 64.92 10.69

24 sv Porous Flow Control Valve 189484.9 8.78
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Each section of the test facility is stacked together such that

[𝐴] =
12

Π
𝑛=11

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦ [𝑇𝐹 ]𝑖𝑛𝑑𝑢𝑐𝑒𝑟
10

Π
𝑛=1

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦ (5.1)

[𝐵] =
24

Π
𝑛=14

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦⎡⎣ 1 0

−𝑠𝐶𝑎𝑐𝑐𝑢𝑚 1

⎤⎦ 13

Π
𝑛=13

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦ (5.2)

[𝑀𝑢𝑝] =
12

Π
𝑛=11

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦ [𝑇𝐹 ]𝑖𝑛𝑑𝑢𝑐𝑒𝑟 (5.3)

[𝑀𝑑𝑛] =
12

Π
𝑛=12

⎡⎣1 −𝐿𝑛𝑠−𝑅𝑛

0 1

⎤⎦ . (5.4)

Applying these matrices to Equations 4.21, the pressure and velocity transfer func-

tions upstream of the inducer are

𝑃𝑚

𝑈̃𝑝

=
𝑃𝑚

𝑃2

𝑧𝑝 =
𝑧𝑝

|𝑀𝑢𝑝 |
(𝑀𝑢𝑝

22 − 𝑀𝑢𝑝
12

𝑧𝑎
)

𝑈̃𝑚

𝑈̃𝑝

=
𝑈̃𝑚

𝑃2

𝑧𝑝 =
𝑧𝑝

|𝑀𝑢𝑝 |
(−𝑀𝑢𝑝

21 +
𝑀𝑢𝑝

11

𝑧𝑎
)

(5.5)

and the transfer functions for the location of downstream of the inducer are

𝑃𝑚

𝑈̃𝑝

=
𝑃𝑚

𝑃2

𝑧𝑝 =
𝑧𝑝

|𝑀𝑑𝑛 |
(𝑀𝑑𝑛

22 − 𝑀𝑑𝑛
12

𝑧𝑎
)

𝑈̃𝑚

𝑈̃𝑝

=
𝑈̃𝑚

𝑃2

𝑧𝑝 =
𝑧𝑝

|𝑀𝑑𝑛 |
(−𝑀𝑑𝑛

21 +
𝑀𝑑𝑛

11

𝑧𝑎
).

(5.6)

𝑧𝑝 is the drive point impedance

𝑧𝑝 =
𝑧𝑎𝑧𝑏
𝑧𝑎 − 𝑧𝑏

(5.7)
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and with an open-open boundary condition

𝑧𝑎 =
𝐴12

𝐴22

𝑧𝑏 = −𝐵12

𝐵11

(5.8)

5.3 Perturbation Limits

Because the modeling framework of this thesis assumed that higher order terms were

negligible, careful consideration was taken to ensure that the forced response magni-

tudes were in the linear regime. Ng had shown that if the amplitude of the fluctuating

mass flow rate was larger than 5-6% of the mean flow, the velocity responses would

fall out of the linear regime. At this forcing amplitude, the velocity response ampli-

tudes were found up to 3% of the mean flow rate [15]. That value was adopted as the

upper limit for the velocity perturbations of this thesis.

Similarly, an upper bound was needed for the inlet pressure perturbation as the

modeling effort does not account for the effect of the inducer inlet pressure pertur-

bations on the inlet cavitation number. As such the model set the limit of the inlet

pressure perturbation to be no more than 30% of the steady cavitation number as

that is the same value found by Ng in the experiments carried out at Caltech [15].

To convert these limits to a form similar to the output of the forced response

model, in Eqs (5.5), the limits were divided by the piston velocity fluctuations. The

piston actuator was set to create velocity perturbations with a magnitude of 5% of

the mean flow velocity, thus the non-dimensional velocity perturbation of the piston

is

𝑈̃𝑝 = 0.05𝜑 (5.9)

where 𝜑 is the steady non-dimensional flow rate. With an inlet pressure perturbation

that cannot exceed 30% of steady cavitation number, 𝜎̄,
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𝑃 = 0.3𝜎̄

𝑃

𝑈̃𝑝

=
0.3𝜎̄

0.05𝜑

𝑃

𝑈̃𝑝

= 6
𝜎̄

𝜑

(5.10)

and with 𝜑 = 0.06 the upper limit inlet pressure perturbation is

𝑃

𝑈̃𝑝

/𝜎̄ = 100. (5.11)

Because inlet velocity perturbation cannot exceed 3% of the steady flow rate,

𝑈̃ = 0.03𝜑

𝑈̃

𝑈̃𝑝

=
0.03𝜎̄

0.05𝜑

(5.12)

the velocity perturbation upper limit is

𝑈̃

𝑈̃𝑝

= 0.6. (5.13)

Due to the lack of experience using fiber film probes in water, prior tests were

conducted to ensure that the fiber film probes could capture the dynamic velocity

measurements. The fiber film probes were used to measure the velocity perturbations

during cavitation surge and showed good agreement in terms of phase with the mass

flow measurements captured optically1 as seen in Figure 5-3. To ensure that the same

performance was observed in the forced response experiments, a lower limit was set

for the velocity perturbations using this data.

The lower velocity perturbation limit was found by determining the background

noise of cavitation surge velocity measurements. The data was collected at a volu-

metric flow coefficient of 𝜑 = 0.06. The surge mode as well as its second and third

harmonics were digitally filtered out using bandstop filter between 0.045 and 0.420

rotor frequency. The lower limit was determined by taking the difference between
1Cavitation surge oscillations were derived from time accurate optical data (video recordings)

analyzing the number of pixels inside the vapor cavities
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Figure 5-3: Velocity measurement captured with a single fiber film probe compared
to normalized optical mass flow rate shows good matching between the two sensors
[19]

the filtered velocity data’s RMS value from the averaged filtered velocity. The found

perturbation limit relative to the piston perturbation strength is

𝑈̃

𝑈̃𝑝

= 0.2. (5.14)

Figure 5-4: Raw and filtered cavitation surge velocity captured with fiber film probe
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Figure 5-5: Power spectral density plots of raw and filtered cavitation surge velocity
data shows surge dynamics were filtered out of fiber film data

5.4 Component Trade Studies

Figure 5-9 shows that without an accumulator the magnitude of the cavitation surge

mode was much larger than what was allowed by the linearity requirement. To reduce

this, an accumulator was added to increase the damping of the system. The addition

of the accumulator added a pair of complex poles and zeros into the model of the

test facility, where the frequency and damping of these poles and zeros determined

the exact effect it had on the cavitation surge poles. To create a transfer function

where the poles of both the accumulator and cavitation surge dynamics are within the

perturbation limits, but also produces 2 identifiable peaks required careful placement

of the pole zero pairs. Tuning of these poles and zeros was done by controlling

physical parameters relating the accumulator size, and location. To determine how

the accumulator will interact with the dynamics of the rest of the test facility this

thesis performed trade studies on the:

∙ Piston location

∙ Accumulator location
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∙ Accumulator compliance

∙ Accumulator resistance and inertance

The results of these studies were used to determine the recommended configuration

of the test facility. The desired transfer functions would have bode plots similar to

the cartoon in Figure 5-6 over the test conditions 𝜑 = 0.06 and 𝜎 = 0.02 − 0.1. The

red dashed line refers to the upper limits, and the black dashed lines refers to the

lower limit.

Figure 5-6: Cartoon of desired transfer function bode plots: Pressure (left) and Ve-
locity (right)

5.4.1 Effect of Piston Location on System Transfer Functions

The first key design choice of the forced response model was determining the location

of the piston relative to the inducer. Physical limitation of the inducer test facility

only allowed for the piston to be placed between 0-12 inducer diameters upstream of

the inducer tip plane and between 0-8 diameters downstream of the inducer housing.

This restriction was set because of the available mounting surface of the optics table

as shown in Figure 5-7.
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Figure 5-7: Weight of the piston requires its placement location to depend on mount-
ing availability on optics table. The lighter weight of the accumulator allows for its
larger placement area.

Simulations using the forced response model showed that placing the piston up-

stream of the inducer resulted in larger perturbation magnitudes, and an additional

zero as compared to placing the piston downstream of the inducer. A more detailed

system mode shape can be created with the former configuration, however, because

the goal of the forced response experiment is to identify the pole corresponding to

the cavitation surge mode the additional zero was not desired. As such the configura-

tion with the piston downstream of the inducer was carried forward, as it had overall

smaller amplitude perturbations and had a larger design space for the accumulator

where the transfer functions would fit within the perturbation limits.

To illustrate these effects, the transfer functions for two different piston configura-

tions were found. Both configurations had the piston located 8 diameters away from

the inducer, one downstream of the inducer housing, and the other upstream. Figure

5-8 shows the schematics of two configurations with the sensor locations.

Simulated at 𝜑 = 0.06 and 𝜎 = 0.03, the bode plots of the upstream pressure
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Figure 5-8: Schematics for piston location trade study: Piston upstream of inducer
(right), Piston downstream of inducer (left)

perturbation transfer function are shown in Figure 5-9. The bode plots for the velocity

and downstream pressure transfer functions similarly show the larger perturbation

magnitudes and additional zero when the piston was placed upstream of the inducer.

Those plots are located in Appendix C. The peak of the bode plots represents the

cavitation surge mode, the red dashed lines are the upper perturbation limits, and

the black dashed lines are the lower perturbation limits.
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Figure 5-9: Comparison of upstream pressure transfer function, at 𝜑 = 0.06 and 𝜎 =
0.03, shows when piston is placed upstream of inducer, larger magnitude responses
are found. Piston placed downstream of inducer (right), Piston placed upstream of
inducer (left)

5.4.2 Effect of Accumulator Location on System Transfer Func-

tions

After anchoring the location of the piston to be downstream of the inducer, the

location of the accumulator was determined. There were several possible accumulator

locations of interest to investigate. Three configurations were considered:

1. Accumulator upstream of the inducer, in the inlet ducting

2. Accumulator downstream of the inducer, but upstream of the piston

3. Accumulator downstream of the inducer, and downstream of the piston

The three locations of the accumulator are shown in Figure 5-10.

Because the piston was limited where it can be placed downstream of the inducer,

the configuration with the accumulator located between the inducer and the piston
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Figure 5-10: Schematic showing accumulator locations for different possible configu-
rations

required the two compliance elements be physically close together. Additionally be-

cause the minimum measurable volume of the accumulator was much larger than the

cavitation void volume, the dynamics of accumulator compliance dominated the cav-

itation surge mode in the forced response plots. This effect is seen in Figure 5-11 as

there is only one observable peak for this configuration as opposed to two for the other

configurations. This co-location of modes would make it difficult to experimentally

identify separately and as such this configuration was not suggested.

Because other two configurations had the two compliance elements separated fur-

ther apart, they both had an easily identifiable accumulator mode. Both accumulator

locations also successfully increased the damping of the cavitation surge mode, thus

reducing its magnitude. However, because of the accumulator’s relative location to

the piston and the amount of inertance separating the inducer with the accumulator,

the two configurations have different effects on the cavitation surge mode, accumu-

lator natural frequencies, and accumulator damping ratios for the same compliance.
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These differences caused configuration 3 to have overall smaller magnitudes which

allowed for more flexibility with accumulator sizing. Placing the accumulator down-

stream of the inducer housing and piston actuator also required less modifications in

terms of new ducting, tees, and mounting supports. As such this configuration was

recommended.

To illustrate these effects, Figure 5-11 contains the bode plots of the upstream

pressure transfer function of all the 3 configurations. For the all 3 configurations

the piston was held at the same location, 8 diameters downstream of the inducer.

The first configuration placed the accumulator 12 diameters upstream of the inducer,

the maximum distance allowed by physical constraints. The second configuration

placed the accumulator equidistant between the inducer housing and accumulator,

4 diameters downstream of the inducer housing. The last configuration placed the

accumulator 18 diameters downstream of the inducer housing, the maximum distance

allowed by size constraints. The accumulator had the same compliance value of

𝐶 = 3.3 for each configuration.

Within configuration 3, it was found that changing ratio of the distance between

the piston with the accumulator against the distance between the piston with the in-

ducer moved the zero in the forced response transfer functions. As the ratio changed

such that the accumulator was closer to the piston then the accumulator peak in-

creased in magnitude. The opposite was also found where as the ratio was changed

such that the inducer was closer to the piston, the inducer peak was increased. A

cartoon is shown in Figure 5-12.
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Figure 5-11: Comparison of upstream pressure transfer function, at 𝜑 = 0.06 and
𝜎 = 0.03, shows when accumulator is placed near the inducer, the two modes overlap.
Placing the accumulator downstream of the piston and inducer results in smaller
perturbation magnitudes

Figure 5-12: Cartoon showing that as piston is moved closer to the accumulator, the
zero moves away from the accumulator peak resulting in a larger magnitude
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5.4.3 Effect of Accumulator Compliance on System Transfer

Functions

The natural frequency of an accumulator is inversely related to its compliance, and

as such the accumulator can be tuned such that it has a large or little influence on

the cavitation surge mode based on how close the accumulator frequency is to the

cavitation surge frequency. However, as the accumulator poles near the cavitation

surge poles, the peaks two compliance elements would overlap, and identification of

each pole becomes difficult.

To illustrate how the compliance of the accumulator affects the system dynamics,

a simulation using the forced response model was performed that placed the accumu-

lator 18 inducer diameters downstream of the inducer housing and placed the piston

8 diameters downstream of the housing. The configuration of the test facility for

this study is shown in Figure 5-13. The simulation had operated the test facility at

𝜎 = 0.03 and at 𝜑 = 0.06 as the accumulator had its non-dimensional compliance

varied from 0.2 to 18.6.

Figure 5-13: Schematic for accumulator compliance and resistance trade study
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Figure 5-14 shows the simulation results and shows that as the compliance of the

accumulator was increased, the accumulator pole’s frequency decreased. The figure

also shows that as the accumulator pole moved to frequencies much larger or smaller

than the cavitation surge pole the less effect the accumulator had on dampening the

cavitation surge mode. This agrees with intuition, as a very small accumulator would

act as a duct with nearly no compliance, and a large compliance would effectively

shorten the system by appearing to be an open boundary. However, an interesting

takeaway from this study was that as the accumulator pole approached the cavitation

surge pole, it "repelled" the cavitation surge pole, by causing the cavitation surge

frequency to change. Figure 5-15 summarizes these effects in an cartoon.

Figure 5-14: Accumulator mode natural frequency is inversely proportional to the
accumulator compliance: upstream pressure transfer function, 𝜎 = 0.03, 𝜑 = 0.06

Though the cavitation surge pole moves as the as the accumulator frequency was

changed, the two frequencies still overlapped for some accumulator compliance values.
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Figure 5-15: Cartoon showing that as accumulator volume increases, the accumula-
tor peak moves to lower frequency and the cavitation surge frequency increases in
magnitude

In the instance where the two poles co-locate one large peak will be seen. The forced

response model can identify the corresponding poles, but to do so experimentally

would be difficult. As such the value of the accumulator compliance was chosen to

avoid this overlapping. Figure 5-16 illustrates the co-located compliance modes for

the upstream pressure transfer function.

For the recommended design, the compliance of the accumulator was chosen such

that it would sufficiently dampen the cavitation surge amplitude, but not such that

the accumulator frequency overlapped with the cavitation surge frequency.
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Figure 5-16: Accumulator mode is tuned to similar frequency as inducer cavitation
surge mode. The poles are difficult to identify from each other: upstream pressure
transfer function, 𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 2.1

5.4.4 Effect of Accumulator Resistance on System Transfer

Functions

The accumulator used in this thesis was assumed to be a gas accumulator teed off

of the main flow. Because the length of the device parallel with the mean flow

was small, and because there was no mechanism to slow the flow it was assumed

that the accumulator had no resistance. However, this would not reflect reality, so

to verify that some resistance would not greatly affect the modeling effort, a trade

study varying the accumulator resistance was performed. The configuration of the

test facility in this study was the same as with the compliance trade study, but the

compliance was fixed to be 𝐶 = 3, and accumulator resistance was added.

Figure 5-17 shows bode plots of the upstream pressure transfer function for this

study. The resistance was varied between 0 and 18 where the value of 18 corresponds

to the resistance of the porous media valve, the largest resistance value in the test
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facility. This value was chosen since it would represent an unrealistically large upper

bound for the accumulator as the porous media valve controls the mean flow through

the entire facility.

Figure 5-17: Accumulator resistance, unless nearing the resistance levels of the porous
media valve, has little effect on the upstream pressure perturbation transfer function:
𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 3

The result of this trade study shows that as long as the accumulator had a resis-

tance in the same order of magnitude as a duct or an elbow and not in the order of

magnitude to that of the porous media valve, the accumulator resistance would not

affect the overall model.

5.5 Recommended Design for Modified Inducer Test

Facility

The trade studies presented illustrated how the size and placement of the accumulator

and piston changed the poles and zeros of the forced response model. Because this

thesis is interested in the cavitation dynamics over a range of cavitation numbers
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the learning from these trade studies were used to design the inducer test facility

over the inlet conditions of 𝜎 = 0.02 − 0.1 and 𝜑 = 0.06. However, due to the large

cavitation surge frequency over this cavitation number range, a single configuration

could not be proposed that satisfied both the pressure and velocity perturbation

limits. Instead two configurations were suggested, one for low cavitation numbers

(𝜎 = 0.03 − 0.04), and another for higher cavitation numbers (𝜎 = 0.04 − 0.1).

To reduce the amount of manufacturing required, the difference between the two

recommended configurations was chosen to be only be the accumulator compliance,

where the accumulator of the low cavitation configuration had a compliance of 𝐶 =

8.25−8.67, and the accumulator of the high cavitation configuration had a compliance

of 𝐶 = 2.9− 3.3. The compliance value varied because the accumulator was designed

such that the volume remained constant. However, since the static pressure of the

accumulator must match the static pressure of the test facility, and that static pressure

of the test facility varies with cavitation number the compliance cannot be constant. A

schematic of the recommended test facility is shown in Figure 5-18. The accumulator

is located 18 diameters downstream of the inducer housing, and the piston is located

8 downstream of the inducer housing.

Figure 5-19 contains the bode plots of the pressure and velocity transfer functions

upstream of the inducer using the low cavitation number configuration. Cavitation

numbers between 𝜎 = 0.03 − 0.04 are within the perturbation magnitude limits. An

additional configuration can be used with even smaller compliance values such that

there would be sufficiently high signal to noise ratio for cavitation numbers below

𝜎 = 0.03, but the dimensional volume associated with those compliance values are

physically difficult to set.

Figure 5-20 contains the bode plots of pressure and velocity transfer functions

upstream of the inducer using the high cavitation number configuration. This config-

uration’s transfer functions are within or at the perturbation limits for the cavitation

numbers 𝜎 = 0.04 − 0.1.

102



Figure 5-18: Schematic for recommended modification for inducer test facility

Figure 5-19: Bode plots of upstream pressure (left) and velocity (right) perturba-
tion transfer functions are within perturbation limits: Recommended configuration
of inducer test facility for low cavitation number flows, 𝜎 = 0.03 − 0.04, 𝜑 = 0.06
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Figure 5-20: Bode plots of upstream pressure (left) and velocity (right) perturba-
tion transfer functions are within perturbation limits: Recommended configuration
of inducer test facility for high cavitation number flows , 𝜎 = 0.04 − 0.1, 𝜑 = 0.06
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Chapter 6

Cavitating Inducer Forced Response

Testing

The first set of forced response tests excited the structural modes of the inducer test

facility and thus the transfer functions captured both the cavitation and structural

dynamics. The structural modes observed in the forced response tests were corrob-

orated with acceleration data collected from impact hammer testing of the inducer

test facility. Modal analysis of this acceleration data indicated that the sources of

these modes arose from flexible structural components. This chapter describes how

changes to the test facility created unintended vibrations of the piping and support

structure. It then provides guidelines on how to avoid these vibrations and valuable

lessons learned.

6.1 Forced Response Experimental Setup

The inducer test facility described in Chapter 3 was modified for forced response

testing using the designs recommended in Section 5.5. A gas accumulator and piston

actuator were added downstream of the inducer by cutting the downstream duct and

adding stainless steel tees. However, to reduce the required manufacturing tolerances

needed for the tees and ducting pieces, a stainless steel bellows was added downstream

of the gas accumulator. Additionally to increase the manufacturing speed, the section
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of ducting connecting the piston tee with the accumulator tee was made from PVC

components. Figure 6-1 and 6-2 shows an image of the modified test facility along

with a schematic with the divided downstream duct.

Figure 6-1: Inducer test facility modified with gas accumulator, stainless steel bellows,
piston actuator, and PVC ducting

Figure 6-2: Schematic of Inducer Test Facility modified with Piston Actuator 𝑝2, PVC
ducting 𝑝3, Gas Accumulator 𝑝4, and Stainless Steel Bellows 𝑝5
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6.1.1 Sensors

As with the free response testing, the forced response tests utilized dynamic pressure

transducers to measure the pressure response and used fiber film probes to measured

the velocity response. As mentioned in Section 5.1, the upstream fiber film probes

were placed 1.14 inducer diameter upstream of the tip plane, where as the upstream

pressure transducers were placed 1 diameter upstream. The downstream pressure and

fiber film probes were placed 1.7 diameters downstream of the inducer volute.

The pressure transducers were Entran diaphragm pressure transducers. They

had a 3.8mm diameter pressure sensitive area and were flush mounted to the test

facility. The transducers were externally calibrated to determine their voltage output

sensitivity to changes in the pressure. However, these pressure transducers were also

sensitive to the fastening torque, so there is low confidence in the steady portion of

pressure measurement.

The Dantec fiber film probes are able to measure the local flow velocity based

on the convective cooling of a thin heated wire through the working principle of

constant temperature anemometery. Assuming a constant fluid temperature and

uniform medium, the heat transfer is controlled by the film temperature and the

fluid velocity. Thus the measured temperature and power input is used to calculate

the velocity. However, due to the lack of a water tunnel, the probes needed to be

calibrated in-situ before every test. A detailed explanation on the calibration and

operation of the fiber film probes is shown in Appendix D.

6.1.2 Accumulator Design

The forced response modeling indicated that multiple accumulator compliances were

required to cover the large test envelope. A water-gas column design was used for the

accumulator. The column was connected to a vacuum pump and a compressed air

source, so that the volume of the accumulator can be varied. Figure 6-3 shows a sketch

of this design. The accumulator was connected to the test rig using a stainless steel

tee, but the accumulator itself was made from PVC components. The accumulator
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was made from 2" diameter schedule 40 piping, which caused the accumulator to be

long and skinny. The accumulator tee was simply supported such that the weight of

the tee was supported, but was allowed to oscillate in the other directions.

Figure 6-3: Cartoon of Accumulator Design

6.1.3 Piston Actuator

The piston actuator used for the forced response experiments was purchased com-

mercially from Parker Hannifin. A hydraulic power unit powered the piston. A

proportional valve was used to controlled the piston operation. The signal input of

the proportional valve and the measurement of the cylinder stroke position was in-

terfaced through a Delta motion controller. The stroke position was measured using

an LVDT and was captured by a high speed DEWEsoft DAQ. The piston head was

76.2mm (3in) in diameter and had a stroke length of 17mm (0.67in). A cutout of the

piston assembly is shown in Figure 6-4. The piston assembly was fixed to the optics

table with custom stainless steel mounts, and the piston tee was supported by resting
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on a crossbar that was attached to the optics table.

Figure 6-4: Cross section of piston assembly [8]

6.1.4 Forcing Signal

A linear chirp signal was used as the fluctuating velocity pulse. The signal had a non-

dimensional frequency range from 0 to 0.6 rotor frequency. This range was chosen as it

spanned the simulated cavitation surge frequency, and accumulator natural frequency.

The piston velocity perturbation magnitude was set at 5% of the mean flow velocity.

This value was chosen because Ng [15] had found that linearity assumption for their

mass flow fluctuations only allowed a maximum piston perturbation magnitude of

6%, and that smaller amplitudes would have weaker signal to noise ratios. The 5%

magnitude was chosen as a compromise between the two requirements, however, if

given more time further testing could have taken place such that this amplitude

was tuned to optimize the signal to noise ratio, while avoiding exciting undesired

responses. The rate at which the frequency of the linear chirp signal increased was

set using the recommended ramp rate found by Hackenberg and Hartung [7]. They

found that to properly excite any mode of the system with a transient sweep, the

maximum ramp rate of the sweep, 𝑓 , should not exceed

𝑓 ≤ 𝜁2𝜔2
𝑛 (6.1)

where 𝜁 is the critical damping coefficient of the pole, and 𝜔𝑛 is the natural
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frequency of the pole. The poles corresponding to cavitation surge found in the

recommended test facility designs were used to determine the appropriate ramp rate.

During the forced response experiment, the chirp signal was repeated 5 times. This

was done so that the unsteady pressure and velocity response to the forcing signal

can be time averaged to reduce noise.

6.2 Analysis of Structural Modes

The forced response test was thought to have had excited structural modes of the test

facility, and induced perturbations that were measured with the sensors. This was

hypothesized because transfer functions with multiple poles and a zero were measured

no matter the test facility setup or test conditions. The forced response test results are

shown in more detail in Section 6.2.1. The hypothesis was corroborated with hammer

tap tests that identified the structural dynamics of the test facility and identified the

source for each structural mode. The findings from the hammer tap tests are covered

in detail in Section 6.2.2.

Figure 6-5 compares data between the forced response test and the hammer tap

test and shows that the pressure transfer function had captured the same structural

dynamics found in the hammer tap test. The transfer function was measured with

the pressure transducer upstream of the inducer and is overlaid with the magnitude of

the imaginary portion of the frequency response functions (FRF) found from hammer

tap tests. The FRFs were determined using accelerometers placed on the outside of

the test facility. The pressure transfer function and the hammer tap test FRFs were

collected under the same operating conditions, zero flow at atmospheric pressure,

and no gas in the accumulator. There are two FRFs shown in Figure 6-5 which

were collected from two separate tests. One with the hammer and sensor located at

the inducer housing - stainless steel ducting flange, and another with the hammer

and sensor located at the bellows - accumulator tee flange. See Figure 6-8. This was

necessary as the two hammer locations had excited different modes of the test facility.

At the lower frequency range of Figure 6-5, the forced response transfer function
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Figure 6-5: Pressure transfer function overlaid with hammer tap test data shows
similar resonant frequencies. Confirms that the forced response test can measured
the structural dynamics of the test facility

and the hammer tap test data both measured the optics table pitch mode, at 0.05

rotor frequency for the hammer tap tests and at 0.08 rotor frequency for the forced

response test. Both also measured ducting bending modes at 0.18 and 0.22 rotor

frequency for the hammer tap test, and at 0.17 and 0.21 rotor frequency for the

forced response test. This mismatch in frequencies was thought to be because the

hammer tap test data required two different tests to see these two modes. As such

the hammer tap test FRFs do not capture the interaction between these modes and

thus could have different frequencies. This effect also explains why there was an anti-

resonance in the the pressure transfer function at 0.16 rotor frequency, but not in

the hammer tap test data. Lastly, the higher frequency range from 0.3 to 0.6 rotor

frequency was also captured between the two data sets. The hammer tap test had

found a number of modes in this range, where as the pressure transfer function had

found a single mode in this range. Because the forced response test had a pulsating

sweep, it was thought that multiple modes were excited simultaneously and caused

the structural modes to manifest in a single peak in the transfer function.
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6.2.1 Analysis of Forced Response Transfer Functions

Pressure and velocity data was collected during a series of forced response experiments

where the dynamics of the test facility was changed. The different experiments in-

cluded tests where the inducer spun at 4000 rpm or in remained a static position, and

with and without compliance in the accumulator. During these tests the upstream and

downstream pressures along with the upstream velocity was measured. The transfer

functions were determined from this data, but none of the fluid modes predicted in

Chapter 5 were observed. The measured transfer functions were hypothesized to have

been influenced by structural dynamics, because the different experiments resulted

in transfer functions with similar shapes. Additionally as the experiments were al-

tered, the transfer functions did not respond as expected. For instance the addition

of compliance into the accumulator did not create an additional response peak. This

hypothesis was further supported as the forced response transfer function of a static

system was shown to have measured the structural modes of the test facility, in Figure

6-5.

Figure 6-6 compares the measured pressure transfer function of the test facility

operating in a static configuration, zero mean flow at atmosphere with a static inducer,

with the transfer function of the test facility operating in a cavitating configuration,

𝜑 = 0.06 and 𝜎 = 0.05 with the inducer spinning at 4000 rpm. The accumulator was

completely full such that there was no accumulator compliance for both tests.

Figure 6-6 indicates that the structural dynamics were being measured with a

some influence from the cavitation dynamics. The transfer function for the static

configuration is the same as in Figure 6-5 in Section and was shown to have captured

the structural dynamics as measured by the hammer tap tests. As the inducer was

spun up, and the test facility began to operate in cavitation conditions, the profile of

the transfer function remained similar. The optics table mode at 0.08 rotor frequency

and the anti-resonance at 0.16 rotor frequency remained in both tests, but there were

more measured dynamics at frequencies greater than 0.2 rotor frequency. This was

thought to have been caused by the cavitation dynamics as that was the only variable
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Figure 6-6: Similar measured upstream pressure transfer functions regardless of flow
condition indicated that the mode shape is heavily influenced by the structural dy-
namics: No Flow, static inducer (left); Inducer running at 𝜑 = 0.06, 𝜎 = 0.05 (right)

changed between the two tests. However, because there were also structural dynamics

in that frequency range, peaks were difficult to identify.

Figure 6-7 compares the pressure transfer functions of the test facility operating

in a static configuration, zero mean flow at atmosphere with a static inducer, and

operating at a cavitating configuration, 𝜑 = 0.06 and 𝜎 = 0.1 with the inducer

spinning at 4000 rpm. For this comparison, the accumulator had a gas volume and

thus had compliance.

Again the cavitation dynamics were seen, possibly as a highly damped pole at 0.3

rotor frequency similar to the simulated pole at 0.34 rotor frequency. However, when

compared to Figure 6-6 both transfer functions in Figure 6-7 reacted in an unexpected

manner to the addition of accumulator compliance. Both had shifted the zero to a

lower frequency instead of adding an additional peak. This effect was thought to be

caused by the accumulator dynamics interacting with the structural dynamics.
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Figure 6-7: The addition of accumulator compliance did not add a peak, but had
shifted the anti-resonance: No Flow, static inducer (left); Inducer running at 𝜑 =
0.06, 𝜎 = 0.1 (right)

6.2.2 Analysis of Hammer Tap Test Frequency Response Func-

tions

A series of hammer tap tests were conducted where the hammer and sensor locations

were on the flanges of the bellows, accumulator tee, piston tee, and stainless steel

pipe in the downstream section of the inducer test facility. Figure 6-8 shows the the

locations on a picture of the test facility.

Because hammer tap tests are susceptible to having the forcing signal damped out

due to the structure, two sets of tests were used to determine the resonant frequencies,

FRFs, and mode shapes. From these two sets of data similar resonant frequencies to

the ones found from the pressure and velocity forced response transfer functions were

identified and the causes of each frequency were sourced to the flexibility of structural

components. The two hammer tap test data sets differ by the location of hammer

tap location, where the first test occurred at the stainless steel pipe-inducer housing

flange, and the second occurred at the bellows-accumulator tee flange.

The imaginary portion of each sensors’ FRF and sensor location the averaged FRF
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Figure 6-8: Hammer and sensor locations of the hammer tap tests

are shown in Figure 6-9. A resonant frequency at 0.05 rotor frequency was observed

in both FRFs, so the mode shape for this frequency was found from the FRFs at each

sensor location as shown in Figure 6-10. The mode shape overlaid a cartoon of the

downstream portion of the test facility is shown in Figure 6-11.

From Figure 6-11, the deflection at all sensor locations are the same magnitude

and phase except for a node at the flange connecting the bellows with the pipe that

connects to the storage tank. At this location, there is a steel fixture connected to the

storage tank that supports the piping, and it was thought that this support kept this

sensor location rigid. The other sensor locations either had supports that were fixed

to the optics table or were not supported at all. Because of the support configuration

and that the measured mode shape had deflections in phase of the same magnitude

it was concluded that this structural mode was the result of the optics table pitch

motion (motion in the Z direction from Figure 5-1). This was further supported

with prior measurements of the pitch mode frequency. The 0.05 rotor frequency

dimensionalized is 3.3Hz which is similar to the value of 2Hz that Ehrlich had found

for the unmodified inducer test facility [6]. Modifications to the structure and test
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facility for forced response testing was assumed to cause the difference between the

two measurements.

The data from the bellows-accumulator flange hammer location was used in a

similar manner to the previous data. The different sensor FRF’s were averaged and

overlaid each other to determine the resonant frequencies, shown in Figure 6-12. From

the sensor overlaid plots, resonant frequencies were found at 0.18, 0.22, 0.38, 0.44,

0.47, 0.50, and 0.56 rotor frequency.

The mode shapes for the 0.18 and 0.22 resonant frequencies showed profiles that

were not easily identified to a structural element of the system. These mode shapes

appeared to be bending or rigid body modes of the ducting, however these frequencies

are smaller than what one would expect from the natural vibration frequency of a

fixed-fixed duct. As such it was hypothesized that the structural flexibility of the

bellows, and along with the multiple fixtures resulted in the complicated mode shapes.

This hypothesis was corroborated by some evidence, as there was only one location

in the downstream portion of the test facility where the ducting was restricted from

moving, and that location was found to have a node within all the mode shapes,

Figure 6-17. The mode shape found for the resonant frequency 0.18 is shown in

Figure 6-13, and the mode shape for the 0.22 resonant frequency is shown in Figure

6-15. These mode shapes overlaid a cartoon of the test facility are shown in Figures

6-14 and 6-16.

The 0.38, 0.44, 0.47, 0.50, and 0.56 resonant frequency mode shapes all indicated

that the source of these modes was the flexibility of the bellows and accumulator tee

support. The mode shape for the 0.44 frequency is shown in Figure 6-18 and is plotted

over a cartoon of the test facility in Figure 6-19. The other resonant frequencies are

found in Appendix E.

From Figures 6-19, there were large deflections on the unsupported side of the

bellows, and the accumulator-PVC ducting flange while the deflection magnitudes

were zero on the stainless steel structural components and the supported side of the

bellows. This indicates that the bulk of the motion is caused by the flexibility of the

bellows, and the simply supported accumulator tee.
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6.3 Inducer Test Facility Design Guidelines

From the comparison of the pressure and velocity transfer functions with the FRF

captured from the hammer tap tests, it was found that the structural dynamics of the

test facility were inducing fluid perturbations measured by the pressure transducers

and fiber film probes. These structurally induced perturbations had distorted the

transfer functions and made characterization of the inducer cavitation behaviour not

possible. It was found that these perturbations were the result of motion caused by the

optics table, bellows, and accumulator tee. As such the most beneficial modification

for the test facility is to replace the bellows with a stainless steel pipe. This would

reduce and remove many of the resonant frequencies above 0.18 rotor frequency, and

limit the pitching motion of the optics table. Additionally, it is advised that the

support of the accumulator tee be modified such that it fixes the tee in place, a

support be applied to the accumulator such that it is not allowed to oscillate during

the forced response experiment, and a support is applied to the optics table to further

limit its pitching motion.
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Figure 6-9: Both the sensor averaged FRF and overlaid sensor FRFs shows resonant
frequencies at 0.05 rotor frequency. Hammer tap location at inducer housing-stainless
steel pipe flange
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Optics Table Pitch mode

Figure 6-10: The 0.05 rotor frequency mode shape is generated by obtaining the
magnitude of the imaginary portion of the FRF at each sensor location. Each location
has the same magnitude and phase.

Figure 6-11: Measured mode shape overlaid a cartoon of test facility indicated that
the 0.05 rotor frequency is caused by the optics table pitch motion
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Figure 6-12: The sensor averaged FRF and overlaid sensor FRFs shows resonant
frequencies at 0.18, 0.22, 0.38, 0.44, 0.47, 0.50, 0.56 rotor frequency. Hammer location
at bellows-accumulator flange
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Ducting rigid body mode

Figure 6-13: The 0.18 rotor frequency mode shape is generated by obtaining the
magnitude of the imaginary portion of the FRF at each sensor location

Figure 6-14: Measured mode shape overlaid a cartoon of test facility indicated that
the 0.18 rotor frequency is a rigid body mode allowed by the flexibility of the bellows
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Ducting bending mode

Figure 6-15: The 0.22 rotor frequency mode shape is generated by obtaining the
magnitude of the imaginary portion of the FRF at each sensor location

Figure 6-16: Measured mode shape overlaid a cartoon of test facility indicated that
the 0.22 rotor frequency is a bending mode of the ducting
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Figure 6-17: Fixed support at center of stainless steel pipe corresponds to node in
mode shape
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Bellows bending mode

Figure 6-18: The 0.44 rotor frequency mode shape is generated by obtaining the
magnitude of the imaginary portion of the FRF at each sensor location

Figure 6-19: Measured mode shape overlaid a cartoon of test facility indicated that the
0.44 rotor frequency mode is a result of the flexibility of the bellows and accumulator
tee support structure
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Chapter 7

Conclusion

7.1 Summary

The goal of this thesis was to characterize the cavitation surge dynamics using a

control theoretical system identification method. Previous work in the GTL [18] had

demonstrated success with this method in aero-compressor systems, and this thesis

attempted to adapt that methodology to cavitating inducers.

In order to test this methodology, The Aerospace Corporation’s inducer test facil-

ity need to be modified to support forced response testing. A free response reduced

order modeling framework was developed to replicate the measured cavitation surge

dynamics captured in [13] and after validation of the free response model, a forced

response modeling framework was derived. This model predicted the transfer func-

tions of the pressure and velocity response and was used to design the modifications

needed for the test facility.

The forced response model indicated that the perturbation magnitudes of the

forced response test would be too large yielding significant non-linear effects. To

remedy this an accumulator was added to the test facility. Trade studies conducted

with the forced response model determined an adequate location for the accumulator

and piston, as well as the required compliance of the accumulator.

After the first set of forced response tests, however, it was not able to characterize

the inducer cavitation surge dynamics because challenges with the structural dynam-
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ics of the test facility extended the experimental test plan past the timeline of this

research project. However, the structural modes were identified through hammer tap

testing, and it was recommended to stiffen the structural components so as to isolate

the structural dynamics from the dynamic pressure and velocity measurements.

7.2 Recommendation for Future Work

To demonstrate that the control theoretical system identification method is a suitable

alternative for characterization of cavitation dynamics, it is recommended that:

∙ The bellows and PVC pipe of the inducer test facility be replaced with stainless

steel piping to prevent the excitation of structural modes.

∙ A forced response experiment is conducted and used to characterize the dynam-

ics of just the gas accumulator and to verify that the natural frequency of the

accumulator matches the simulated values.

∙ A forced response experiment is conducted with the inducer operating at the

same flow conditions as Brennen had tested in [3].

∙ The unsteady pressure and velocity measurements are used to determine all

four transfer functions, and the inducer transmission matrix.

∙ The inducer lumped parameters (pump gain, resistance, inertance, compliance,

mass flow gain factor) are extracted from the measured inducer transmission

matrix, by fitting the measured data to the inducer lumped parameter model.

After successful characterization of the cavitation surge dynamics, the longer term

recommendation is to apply this methodology to rotating cavitation dynamics by:

∙ Creating a reduced order model to determine what modifications are needed for

the inducer test facility

∙ Modifying the control theoretical system identification methodology for higher

spatial harmonic perturbations to represent rotating cavitation.
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∙ Modifying inducer test facility with a distributed array of pressure transducers,

fiber film probes, and bleed valve actuators.

∙ Conducting a forced response test to characterize the rotating cavitation dy-

namics
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Appendix A

Non-dimensional Compliances and

Mass Flow Gain Factors
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Figure A-1: Non-dimensional compliance of storage tank

Figure A-2: Non-dimensional compliance of inducer from CFD [10]
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Figure A-3: Non-dimensional mass flow gain factor of inducer from CFD [10]
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Appendix B

Inducer Model Selection
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The determination of the inducer model was done by comparing the simulated

eigenvalues using both inducer models. The eigenvalues were found for the fluid sys-

tem modeled with the transmission matrix Equation (3.6) and the eigenvalue equation

for open-open boundary conditions, Equation (3.7). Using the CFD derived 𝐶 and

𝑀 by Jackson et al. [10], both models were inaccurate but exhibit correct trends, so

the cavitation compliance and mass flow gain factor was modified to fit the measured

dynamic behavior.

Figures B-1, B-2 compares the simulation results using the two inducer models

and the same CFD derived cavitation compliance and mass flow gain factor.

Both models showed similar stability trends where between 𝜎 = 0.03 and 𝜎 =

0.02 the critical damping percentage rose, but neither predict the onset of cavitation

surge instability. Additionally the frequency trend for both models agreed with the

experimental findings, where the cavitation surge frequency increased with increased

cavitation number. However, the measured cavitation surge frequencies were bounded

by the two models, indicating that the modification of cavitation compliance would

need to be increased for the lumped parameter model, and decreased for the 1D

cavitation surge model.

As was done in Section 3.3.3 a time lag and scaling coefficient was added to the

CFD cavitation compliance and mass flow gain factor. The required 𝐶 and 𝑀 to

capture the test data with each model are shown in Table B.1.

Table B.1: Modified Cavitation Compliance and Mass Flow Gain Factor for Lumped
Parameter and 1D Cavitation Surge Models

Cavitation Compliance Mass Flow Gain Factor

Lumped Parameter Model 1.3𝐶
1+0.6𝑠

2𝑀
1+0.6𝑠

1D Cavitation Surge Model 0.3𝐶
1+0.5𝑠

𝑀
1+0.5𝑠

Figures B-3, B-4 compare the stability and frequency of the models with the
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Figure B-1: Cavitation surge frequency found using the lumped parameter inducer
model and the 1D cavitation surge model and CFD derived 𝐶 and 𝑀 bound the
measured cavitation surge frequency

modified 𝐶 and 𝑀 values. Even though the lumped model predictions with the

modified 𝐶 and 𝑀 has closer onset and termination points than the 1D cavitation

surge model, the 1D cavitation surge model will be carried forward in this thesis. It

was chosen because a gain was not applied to the mass flow gain factor, and so less

modifications was done to the input parameters. Additionally Jackson et al. had

used their CFD results in their own stability model, and found that a reduction of

the mass flow gain factor was needed to more correctly model their system, opposite

of what was found in this thesis [10].
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Figure B-2: Neither the lumped parameter model nor the 1D cavitation surge model
matched the observed stability behavior. The critical damping percentage is shown;
CFD Derived 𝐶 and 𝑀 is used

Figure B-3: Modifications to the CFD derived 𝐶 and 𝑀 yielded simulated frequency
content that matched the observed behavior
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Figure B-4: Modifications to the CFD derived 𝐶 and 𝑀 yielded simulated stability
trends that matched the observed behavior
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Appendix C

Transfer Function Bode Plots
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C.1 Piston Location Trade Study

Figure C-1: Comparison of upstream velocity transfer function, at 𝜑 = 0.06 and 𝜎 =
0.03, shows when piston is placed upstream of inducer, larger magnitude responses
are found. Piston placed downstream of inducer (right), Piston placed upstream of
inducer (left)
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Figure C-2: Comparison of downstream pressure transfer function, at 𝜑 = 0.06 and
𝜎 = 0.03, shows when piston is placed upstream of inducer, larger magnitude re-
sponses are found. Piston placed downstream of inducer (right), Piston placed up-
stream of inducer (left)

Figure C-3: Comparison of downstream velocity transfer function, at 𝜑 = 0.06 and
𝜎 = 0.03, shows when piston is placed upstream of inducer, larger magnitude re-
sponses are found. Piston placed downstream of inducer (right), Piston placed up-
stream of inducer (left)
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C.2 Accumulator Location Trade Study

Figure C-4: Comparison of upstream velocity transfer function, at 𝜑 = 0.06 and
𝜎 = 0.03, shows when accumulator is placed near the inducer, the two modes overlap.
Placing the accumulator downstream of the piston and inducer results in desired
smaller perturbation magnitudes
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Figure C-5: Comparison of downstream pressure transfer function, at 𝜑 = 0.06 and
𝜎 = 0.03, shows when accumulator is placed near the inducer, the two modes overlap.
Placing the accumulator downstream of the piston and inducer results in desired
smaller perturbation magnitudes

Figure C-6: Comparison of downstream velocity transfer function, at 𝜑 = 0.06 and
𝜎 = 0.03, shows when accumulator is placed near the inducer, the two modes overlap.
Placing the accumulator downstream of the piston and inducer results in desired
smaller perturbation magnitudes
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C.3 Accumulator Compliance Trade Study

Figure C-7: Accumulator mode natural frequency is inversely proportional to the
accumulator compliance: upstream velocity transfer function, 𝜎 = 0.03, 𝜑 = 0.06

Figure C-8: Accumulator mode natural frequency is inversely proportional to the
accumulator compliance: downstream pressure transfer function, 𝜎 = 0.03, 𝜑 = 0.06
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Figure C-9: Accumulator mode natural frequency is inversely proportional to the
accumulator compliance: downstream velocity transfer function, 𝜎 = 0.03, 𝜑 = 0.06

Figure C-10: Accumulator mode is tuned to similar frequency as inducer cavitation
surge mode. The poles are difficult to identify from each other: upstream pressure
transfer function, 𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 2.1
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Figure C-11: Accumulator mode is tuned to similar frequency as inducer cavitation
surge mode. The poles are difficult to identify from each other: upstream pressure
transfer function, 𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 2.1

Figure C-12: Accumulator mode is tuned to similar frequency as inducer cavitation
surge mode. The poles are difficult to identify from each other: upstream pressure
transfer function, 𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 2.1
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C.4 Accumulator Resistance Trade Study

Figure C-13: Accumulator resistance, unless nearing the resistance levels of the porous
media valve, has little effect on the upstream velocity perturbation transfer function:
𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 3

Figure C-14: Accumulator resistance, unless nearing the resistance levels of the porous
media valve, has little effect on the downstream pressure perturbation transfer func-
tion: 𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 3
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Figure C-15: Accumulator resistance, unless nearing the resistance levels of the porous
media valve, has little effect on the downstream velocity perturbation transfer func-
tion: 𝜎 = 0.03, 𝜑 = 0.06, 𝐶𝑎𝑐𝑐𝑢𝑚 = 3
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C.5 Recommended Design

C.5.1 Low Cavitation Design

Figure C-16: Bode plots of upstream velocity perturbation transfer functions: Rec-
ommended configuration of inducer test facility for low cavitation number flows

Figure C-17: Bode plots of downstream pressure perturbation transfer functions:
Recommended configuration of inducer test facility for low cavitation number flows
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Figure C-18: Bode plots of downstream velocity perturbation transfer functions: Rec-
ommended configuration of inducer test facility for low cavitation number flows
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C.5.2 High Cavitation Design

Figure C-19: Bode plots of upstream velocity perturbation transfer functions: Rec-
ommended configuration of inducer test facility for high cavitation number flows

Figure C-20: Bode plots of downstream pressure perturbation transfer functions:
Recommended configuration of inducer test facility for high cavitation number flows
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Figure C-21: Bode plots of downstream velocity perturbation transfer functions: Rec-
ommended configuration of inducer test facility for high cavitation number flows
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Appendix D

Fiber Film Probe Calibration
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This section provides a summary of how to calibrate the fiber film probes. A more

detailed explanation and analysis can be found in [11]. In order to collect velocity

measurements, the fiber film probe needs to be calibrated with a known velocity.

Since there was no available water tunnel, the probes were calibrated in-situ with the

test. The Aerospace inducer test facility has the capability to measure volumetric

flow rate, so the strategy to calibrate the probes was to equate this volumetric flow

with an integrated voltage profile measured by traversing the fiber film probe across

the duct. The initial estimate for the fiber film calibration coefficients is generated

with measurements collected with the probe perpendicular to the flow direction, and

is corrected with measurements captured when the probe is parallel with the flow

direction.

First, the voltage profile is generated by collecting flow measurements at 5 loca-

tions starting from the center of the duct and moving 0.25 radii outward. Due to

physical limitations however, the location near the wall was taken at 0.95 radii from

the center. These measurements are repeated 4 times at a flow coefficient of 0, 0.07,

0.085, and 0.1. Using each generated voltage profile, the following integral is solved

𝑄 =

∫︁ 𝑅

0

2𝜋𝑟𝑣(𝐸)𝑑𝑟 (D.1)

where the velocity voltage relation is assumed to be a two term power relation

𝑣 = 𝐴+𝐵𝐸𝑛. (D.2)

In these equations, 𝑄 is the volumetric flow rate, 𝑅 is the duct radius, 𝑣 is the local

velocity as a function of 𝐸, the measured voltage, and 𝐴, 𝐵 and 𝑛 are calibration

coefficients.

To calculate the coefficients, a pseudo least-squares fit was performed. An initial

value of 𝑛 was chosen so that 𝐴 and 𝐵 could be solved using the data from the flow

coefficients of 0 and 0.1. The volumetric flow rate can then be estimated for flow

coefficients of 0.07 and 0.08 and are then compared to the measured volumetric flow

rate. 𝑛 is adjusted until the sum of the squares error was minimized.
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Because the probes measure velocity based off of heat transfer, the probes will

measure a velocity even when the flow is parallel to wire. To correct these measure-

ments Jørgensen’s equation is used.

Φ𝑒 = Φ𝑁 + 𝑘2Φ𝑇 (D.3)

Φ𝑒 is the effective flow coefficient (the measured velocity), Φ𝑁 is the true flow coef-

ficient perpendicular to the flow, and Φ𝑇 is the true flow coefficient parallel to the

probe. To calculate 𝑘 it is assumed that the flow at the centerline is purely axial.

This means that Φ𝑇 = 0 and 𝑘 can be generated from the axial and swirl direction

measurements at the centerline.
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Appendix E

Hammer Tap Test FRF and

Modeshapes
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Bellows Bending Modes

Figure E-1: The 0.38 rotor frequency mode shape is generated by obtaining the
magnitude of the imaginary portion of the FRF at each sensor location
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Figure E-2: Measured mode shape overlaid a cartoon of test facility indicated that the
0.38 rotor frequency mode is a result of the flexibility of the bellows and accumulator
tee support structure

Figure E-3: The 0.47 rotor frequency mode shape is generated by obtaining the
magnitude of the imaginary portion of the FRF at each sensor location
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Figure E-4: Measured mode shape overlaid a cartoon of test facility indicated that the
0.47 rotor frequency mode is a result of the flexibility of the bellows and accumulator
tee support structure
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Figure E-5: The 0.56 rotor frequency mode shape is generated by obtaining the
magnitude of the imaginary portion of the FRF at each sensor location
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Figure E-6: Measured mode shape overlaid a cartoon of test facility indicated that the
0.56 rotor frequency mode is a result of the flexibility of the bellows and accumulator
tee support structure
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